PHYSICAL REVIEW E, VOLUME 63, 056113

Three-loop critical exponents, amplitude functions, and amplitude ratios from variational
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We use variational perturbation theory to calculate various universal amplitude ratios above and b@low
minimally subtracted)* theory withN components in three dimensions. In order to best exhibit the method as
a powerful alternative to Borel resummation techniques, we consider only two- and three-loops expressions
where our results are analytic expressions. For the critical exponents, we also extend existing analytic expres-
sions for two loops to three loops.
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. INTRODUCTION dimensiong Contrary to thee expansions aroun®,,=4,
the system is not treated near the dimension of naive scale
Recently, quantum mechanical variational perturbationnyariance, and the scaling properties are no longer obvious
theory[1] has been successfully extended to quantum fieldrder by order ing. In addition, singular terms violating
theory, where it has proven to be a powerful tool for deter-Griffith’s analyticity are introduced that show up by ampli-
mining critical exponents in thref2—-4] as well as in 4 ¢  tudes having unpleasant logarithmic dependences on the cou-
dimensiong5,6]. The purpose of this paper it to apply this pling constant.
theory to amplitude ratios that can be measured experimen- The universal amplitude ratios were first discussel®]
tally. Their perturbation expansions suffer from the samen the context of Wilson’s renormalization group approach,
asymptotic nature as those of the critical exponents, thugnd by Bervillier [27] within the field theoretic approach
requiring delicate resummation procedures. These have be&gveloped if9]. The experimentally most easily accessible
the subject of numerous studies, of that we can only mentio@mplitude ratios are formed from the amplitudes of the lead-
a few, by various groups. There are two main approache#ld Power behaviors of various physical quantities Tin
followed by various authors which we shall divide according — Tc @bove and below the critical temperatig. A typical
to their method into a Paris school and a Parisi school. ~ €Xample, and one of the best measured amplitude ratios, is
The Paris school follows Wilson's ide&#,8] by consid- for the specific heat pf superfluid hgllum abpve and be]ow
ering epsilon expansions iD=4-— e dimensions, making T.. It was obtained in a zero-gravity experiment by Lipa

use of the fact that in the upper critical dimenslog,=4 the et al. [28], who parametrized the specific heat as follaws

theory is scale invariant. The results are at first power seriel_%se the second of the references quotefP8y):

in the renormalized coupling constagt For small €, the A"
coupling constant goes, in the critical limit of vanishing  C*=—/|t|"%(1+DJt|*+E|t|?*)+B, t=T/T,—1,
mass, to a stable infraredR) fixed point g—g*, where @
scaling laws are founfB]. The position of the fixed point is @)
series diverge. The large-order behayitd, 11 suggests that - 0.001,A /a=~525.03,D=~0.00687,E=0.2152, and
these series a.re Borel summafie, 13 Tr;e exack expan- B=538.55(J/mo| K). This parametrization is an approxima-
. o T ; tion to the Wegner expansion form
sions of the critical exponents are known up to five loops
[14,15. They have been resummed with the help of Borel
transformations and analytic mapping methods in a8
18]. +ay t|*1+ag dt)*A+ag t[3hit ) ®)
The Parisi school follows Ref19] in studying perturba-
tion expansions directly iD =3 dimensiong20-25. Inthe  with y a combination of critical exponents afRd. denoting
original works, renormalization conditions are used accordihe leading amplitude above and beldwy, respectively.
ing to which renormalized correlation functions should be-Compared to this general Wegner expansion, higher powers
have for small momenta lik&(p)~(p?+m?) 1. Recently, in A,=A have been neglected in Ed), as well as daughter
these normalization conditions have been replaced by dimemowersA;,i=1. This will be also the case in the present
sional regularization nedd =3 to remove divergencedsee,  work, where we shall take into account only one exporent
for instance,[23], which uses a regularization D=3—¢ related tow by the relationA=ww.
Further amplitude ratios are formed from the amplitudes
a;; of the nonleading power behaviors h—T., the so-
*On leave from Physique Nuca@e Therique, B5, Universitele  called confluent terms. Amplitude ratios of confluent terms
Liege Sart-Tilman, 4000 Lige, Belgium. are also universal quantiti¢®5,29-31. They are known up

F= Fi|t|X(1+a01]Jt|A0+ a0'2|t|2A0+ a013|t|3A0+ e
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to five loops belowT . [25] (N=1), or even up to six loops L _ i _

[30] (N=1,2,3) if only theT>T, regime is considered N z=1+2, ag', a=2, bjel. (3)
is the number of components of the figltllone of them will =1 =1

be examined here.

Apart from critical exponents and amplitude ratios, ex-The most important property of this scheme is that the mass
perimental observations show that the equation of state an@es not enter explicitly the expansions, which can therefore
the free energy have a simple scaling form of the Widombe used on both side df.. Since the critical exponents are
type, whose field-theoretic explanation can be found in varif€lated to the renormalization constants, the mass indepen-
ous textbookg9,12,13. For example, the free energy of a de_nce of thlai |mpl|es a c_Iear decomposmon of the corre-
system with magnetizatioM g may be represented ne@i Iatlon_ fun_ctlons into amphtude funct_lons apd power parts.
by F(t,Mg)=]t|2~f(|t/M%F), with « and 8 being critical V_Vork_lng in thre_e_ dlmensmns, th_ere is a prize to pay: loga-
exponents and is the relative distance to the critical tem- rithmic Zlngylantlgs kI)T tre C?]UP“”IQ qul_}?tant. TBeyhcanhbe_
perature. The scaling equation of state has been calculated fgmoved using suitable length scales. This may be the physi-

&y length scale™ aboveT,, and another length scale
. 2 c»
€ expansions to ordee” for general ON) symmetry[32] 015164, in the critical regime, to the longitudinal mass below

and to ordere” for the Ising model K1=1) [33]. T.. Since they are not exactly equals, the Aachen group call
the length scal€_ a pseudolength. A precise definition of
£_ has been given if36]. With different collaborators,
Dohm has applied this scheme to derive various critical ex-
Amplitude ratios relate the properties of the disorderedponents and renormalization-group functions ab®y¢37],
phase, which are easy to calculate, to those of the ordergd calculate the heat capacity, the order parameter, and the
phase, which are much harder to derive. Several methodsuperfluid density(both above and below.), as well as
have been proposed to connect the two phases. One of thesnme useful universal combination of observable quantities
is due to Bagnuls and Bervilli¢R4], and was applied further [38]. So far, these works have been limited to low orders.
in [25,34]. A similar procedure was followed 22,23 for ~ The Ising model is the simplest system, since it contains no
the amplitude ratio of correlation lengths, which had beermassless Goldstone modes that cause extra infrared singu-
omitted by Bagnuls and Bervillier. Calculations in three di- larities at intermediate stages of perturbative calculations of
mensions are usually numerid&0,24,29, although low or- the thermodynamical quantities on the coexistence curve
ders can be treated analyticallyee[22,23,34 for analytic =~ where the external magnetic field vanishes. The infrared sin-
three-loop resulys Such analytic studies are important sincegularities are the reason why the analytical equation of state
they offer insight into the nonanalyticity with respect to theand amplitude functions below . have been restricted
coupling constant. The amplitude ratio found[@2,23 is  [27,38,39 to two loops for generalN. These extra infrared
restricted to the Ising cadé=1. The same is true fdi35], singularities, which cancel at the end of the calculations, are
which includes all diagrams up to three loops, as is the caseaused by the physical singularities of the transverse suscep-
of [34]. The latter work also incorporates a cubic anisotropictibility. Being physical, they remain at the end. Due to these
term, but for which the replica limiN—O is considered, difficulties, numerical studies up to five loops beldwy,
allowing to probe the critical behavior of the weakly dilute with accurate Borel resummation are available only for the
Ising system. Ising case[21,25,40,4]. Only analytic three-loop calcula-
All power series are divergent and require resummationtions for the thermodynamic quantities below have be-
Numerically, this has been done for the Ising mode[dd]  come recently available for the generalN)(system[42].
to five loops for the critical exponents, various amplitudeBased on these, calculations in which some contributions
ratios, and the equation of state. Referef®H also contains were evaluated up to five loops were done for amplitude
comparisons between the results of different graiyesh for  ratios atN=2 andN=3 [41], proceeding as follows: Am-
D=3 and D=4-¢), with experiments and with high- plitude functions for the heat capacity were calculated using
temperature series. For the most up-to-date work,[$8f  the three-loop result of42] and five-loop results for the
which besides the critical exponents and amplitude ratios foracuum renormalization constdrtl,43 and the critical ex-
the Ising model also gives the critical exponents for generaponenta. For «, use has been made of the values given in
O(N) symmetry. [17] for N=1, of the value given in the first of Rdf28] for
Another approach has been followed by Dohm and coliN=2 (this being the initial result of the space shuttle experi-
laborators in Aachefi36—38 who proposed to use an ana- ment, which was subsequently corredteaind of the value
lytic renormalization scheme in the form of minimal subtrac-given in Ref. [44] for N=3. Since then, the works
tion when working inD=3 dimensions. The use of the [2-6,13,18 have appeared and seem to be the best available
minimal subtraction scheme in field theories at fixed dimen+eferences concerning resummed data. Although this is not
sions 2<D <4 has one important advantage: the renormalthe main subject of this paper, it is interesting to see in which
ization constants are the same in both the symmetric phaseay the new values of affect the amplitude ratios of the
with T>T_ and the ordered phase with<T.. The renor- heat capacity given if41]. This will be done in Sec. IV.
malization constants are power series in the renormalized In the following, we shall calculate amplitude ratios with
coupling constant with coefficients that are polesinp to  the help of Kleinert's variational perturbation theory
the given order of the perturbative series [1-6,13. To exhibit the method most clearly, we shall base

A. Perturbative calculation of amplitude ratios

056113-2



THREE-LOOP CRITICAL EXPONENTS, AMPLITUEE . . . PHYSICAL REVIEW E 63 056113

our study on analytical results only. This will restrict us to

1 1
the level of three loops. Working at such low orders, the H=f d®x §(V¢B)2+ Efo¢§+ ug(3)>—hg- ¢g|.

accuracy of our resummed values cannot compete with some (4)
existing five-loop calculations. For this reason, we shall not
include nor discuss error bars in the final results. To facilitate comparisons with the results of Dohm and co-

To illustrate the method of variational perturbation theory,workers[42,46], we use the same normalizations. The fields
we shalll first show how to obtain analytic expressions for they, and the external magnetic fiel, haveN components,
critical exponents, thus extending an earlier two-loop anay; is the bare coupling constant, argla bare mass term, to
lytic calculation in Ref[5]. After this, we apply the proce- pe specified later. The integrals are evaluated in dimensional
dure to amplitude ratios of various experimental quantitiesreqularization. In dimensiorD=3, ¢*theory is super-
The critical exponents are computed directly from the renorrenormalizable. This means that only a finite number of
malization constants of the theory. In the minimal subtrac-counterterms have to be added in order to make observables
tion scheme, the renormalization constants have only polgnjte. More economically, the divergencies can be removed
terms ine. For the amplitude functions, this is no longer true: py 3 shift of the mass term and reexpandingri-ro.,
in aD=4— ¢ approach, they have to be expandedirFor  herer . is the critical value ofrg. In e-expansionsy o,
this reason it is not priori clear at which level the varia- yanishes. Near the critical temperaturg,behaves liker .
tional method has to be applied. For the purpose of showing. 5t where t is the reduced temperaturel € T.)/T..
the power of the method to resum amplitude ratios, it is theRypen working neab =3 dimensions, it is possible to use a
better to calculate amplitude ratios in three dimensions. Asimplified shift or, that only contains th® =3 pole ofr .
resummation of amplitude ratios within the-expansion (and not the poles ab,>3 with 1=3,4,5. .., where D,

method is postponed to a later publicat[d]. We shall also  —4_211). For convenience, we write the differences as a
consider only the expansions of the Aachen group, especiallya\y mass termro—r0C=m§ and ro— 5r0=m’§. In this

their analytical two-_loop[46] and thrge-lpop[42] expan- way, we arrive at a new bare theory, with a mass tertg
sions. As a bonus, since the renormalization constants are tl?ﬁat’ma be considered as the ph éical square mass of the
same(apart for trivial coefficients coming from the respec- theor ¥he introduction of the gain’ malges the theor

tive conventionsin the minimal subtraction scheme finite y'It has, however, to be distinguBished from the mgss

=4~ ¢ dimensions and in fixed =3 dimensions, the criti- field, and coupling-constant renormalization that still has to
cal exponents will be the same in variational perturbatiorb ’ .p 9 o .
e performed: this latter renormalization, related to the intro-

theory. This will be shown explicitly below. duction of the renormalization constards. is nothing el
The paper is organized as follows. In Sec. Il, we define uction of the renormalization constanzs, 1S nothing €ise
than a change of variables reflecting the fundamental scale-

the model and the conventions. In Sec. Ill, we briefly reVieW'nvariance hypothesis of the renormalization group approach
the strong-coupling approach and apply it to the evaluatio he distinction between the two steps—making the theory

of the critical exponents at the level of two and three Ioopsf. i q lizi is irrel CiD—4—c di
extending the results of Rdf5]. Section IV is the main part INIte and renormalizing—is irelevant 1 =a—e dimen-
sions because,.=0 at e=0: Finiteness of the theory and

of this paper, where we show how the strong-coupling limit o oC o

of various amplitudes and amplitude ratios are determineat.he renorr_nallza'_uon program are more_mUmater related_ than
In Sec. IV F, we use the latest available value for the expoln D=3 dimensions. For a thorqugh discussion of_the differ-
nentsa andv [2-6,13,18 to calculate the amplitude ratio of (in?c):z_betwe_en the rezozrma_llzatlon[Drlv:4— ;;{]Sd .f');idD

the heat capacity and the universal combinatiqn (con- imensions, sef24,29, in particular p. in24].

structed from the leading amplitudes of the heat capacity, thte W'th'ntth? s‘:mmlr:n?: subgrat\ctlgn scéhteme, the r;}normlallzat—
order parameter, and the susceptibility abolvg, for N lon constants, which are introduced to remove the poles a

D=4, are given by

=0,...,4, and tocalculate the amplitude ratio of the sus-
ceptibilities in the Ising modelN=1). Finally, we draw our 7,
conclusion in Sec. V. For completeness, we have added an mé:mZ_’“, (5)
Appendix containing all formulas taken from other publica- Zy
tions, and calculations related to them.
z
Apls=p 5 U, ()
II. MODEL AND CONVENTIONS Zd>
The critical behavior of many different physical systems _ 712 )
can be described by an R)-symmetric$*-theory. In par- Pe=24"¢,

ticular, the caseN=0 describes polymers\=1 the Ising
transition (a universality class that comprises binary fluids,
liquid-vapor transitions, and antiferromagnefs=2 the su-
perfluid helium transitionN =3 isotropic magneté&ransition

of the Heisenberg typeandN= 4 phase transition of Higgs

the quantities on the right-hand sidehs) being the renor-
malized ones. In Eq(6), u is an arbitrary reference mass
scale and

D/2
fields at finite temperature. In the presence of an externaIAD:F(1+E/Z)F(l_dz)gD with §D: 2m
field hg, the field energy is given by the Ginzburg-Landau ' I'(D/2)(27)P
functional (8)
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is a convenient geometric factor. The numBgris equal to IIl. EXACT CRITICAL EXPONENTS UP TO
Sp/(27)P whereSy, is the surface of a sphere b dimen- THREE LOOPS
sions. SinceAp goes toSp, whenD — 4, the renormalization Variational perturbation theory has been developed for

constants have the same fofdv] in D=3 as inD=4—¢,  the calculation of critical exponents [2] and[5] in D=3

and the resummation for the critical exponents is identicabhnd D=4— ¢ dimensions, respectively. A review can be

for the two approaches. This will be made clear below. Foffound in the textbook13]. So we need to recall here only the

the amplitude calculations, however, things are different: Ifmain steps of the procedure.

the expansions are truncated at some order, they turn out to Let f, (ug) be the partial sum of ordér of a power series

depend on the difference betweAgn and Sy . Rather than .

saying that the normalization A&y is a matter of conve- _ —

nience to simplify theD dependence of lower order results f%fL(uB):i:EO fiug.- (12

[36,37], we shall see that the use of the geometric fat@pr

improves low-order results: For example, the one-loop exin the present context,

pansion of the amplitude function for the order parameter is

identical to the zero-loop ord¢B8]. Ug=ugu “Ap (13
With these conventions and notations, the renormalization

constants in minimal subtraction are given up to three loopsvith D=3 ande=1, i.e.,ug=ug/(4mu). The mass scalg

by [13-15 will be specified later. As seen from E@), this scale leads

to a dimensionless coupling constant. We assume that in

Eqg. (12), the ultraviolet(UV) divergencies have been re-

4(N+2 2(N+5) 3 -3 di i is i i ;
Zo=1+ ( )u+8(N+2) ( )_ Slo m_oved.2 I_nD 3 dimensions, this |s_ach|eved by Wor_klng
€ €? € with mg instead ofr,. However,ry. is a nonperturbative
quantity in three dimensions, and working withg or m’3
8(N+2 8(N+5)(N+6) generates nonanalyticities due to the presence of logarithms
+8(N+2) &3 of the coupling constant. These will be removed by the in-
troduction of the correlation length, aboveT. and of the
4(1IN+50)  3IN+230| length {_ below T, see[38]. The mass scal@ will be
- 2t v (9 identified with the inverse of these correlation lengths in

the two phases. Since the correlation lengths go to infinity
like |t| ~* as the critical point is approached, the series has to
be evaluated in the limit of an infinite dimensionless bare
U2 coupling constanfug. In the renormalization group ap-
proach, this regime is studied by mapping the expressions
into a regime of finite renormalized quantities using the
24(N+8)° 16(N+8)(17N+76) renormalization constant§)—(7). If we can find directly the
&3 N &2 strong-coupling limit, this renormalization is avoidable. To
understand this, consider the relation between the renormal-
ized and the bare coupling constant at the one-loop arder
u?, =ugu €—cle(ugu)?, wherec is a constant. At the critical
point, u—0, or ug—, and the series expansion breaks
(10)  down. If we sum a ladder of loop diagrams, we obtain 1/
=1/(ugu €)+cle. Now critical theory can easily be
reached to give a renormalized = e/c. A strong-coupling
3 expansion in the bare coupling will turn out to give the same
?‘; u-. result. From our point of view, the renormalization group
(11) approach is simply a specific procedure of evaluating power
series in the strong-coupling limit.
In D=4- ¢ dimensions, the situation is slightly more in-
They are related to that in Reff13] by the replacement volved since renormalization is also necessary to obtain UV-
—@/12. This factor comes from the different coefficient of finite quantities, the mass shift—ro. not being sufficient
the coupling termu—g/4! in Eq. (4) and the fact that a for this goal as in the super-renormalizable cBse3, since
factor 1/(4m)? is absorbed in the definition af in [13], ro.=0 ase—0. As far as this paper is concerned, we shall
whereas a factoAp_,=1/(872) is included here. make use of the fact thdd=3 andD=4— ¢ dimensions
These renormalization constants serve to calculate aBeries expansions in terms of renormalized quantities are
critical exponents including the exponeatthat character- available in the literature. These will be converted back to
izes the approach to scaling. This is the subject of Sec. I ifbare expansion, using the inverse of E¢9—(7). For D
which we illustrate the working of variational perturbation =3 dimensions, this expresses all physical quantities in
theory. powers ofug/u. The mass scalg is identified withz ! in

€ €

4(N+8) (N+8)2 B5N+22
Z,=1+ —u+1 -

.8
3

, 98(3)(5N+22)+ 35N2+ 942N + 2992

€

Z,=1 aN+2) , 8 N+2)(N+8
p=1-————u —5( )( )

056113-4



THREE-LOOP CRITICAL EXPONENTS, AMPLITUEE . . . PHYSICAL REVIEW E 63 056113

the disordered or ordered phase, respectivelyDind—e¢  of Eq. (14), whose three-loop order contains all necessary

dimensions, the critical theory is obtained by identifying information to getw to that given order.

—m with the renormalized mags in the disordered phase.

In a subsequent publicatidd8], we will show how to per- A. Method

form directly a calculation in terms of UV-finite bare quan-

tities inD=4— €. In this way, the renormalization procedure

is superfluous, our sole problem being the evaluation of th

expansions in the limit of infinite coupling constant.
Inverting Eq.(6), we have the expansion f(Ug—20) = 0ply_

Starting from Eq.(12), we follow [2,5,13 to write its
étrong—coupling limit as

L S —idw
3 a7y

J

[ amn+8)_  [2(N+8)% 3(3N+14)], (17
u=ugy{l——ug+8 5 + Ug

€ € € The symbol opf, denotes optimization with respect i .

This expression holds provided it yields a nonzero constant.
3
_g8N*T8)"  3AN+8)(3N+14 This limit will be denoted byf*:
63 62
f(Ug— ) =1*+colig ' “+ O(Ug >*), (18)
96(3)(5N+22)+ 33N%+ 922N +2960|_

+ 3e Ug- (14 wherec, is a constant. The optimalization is supposed to

makef depend minimally orilg . In practice, this amounts to

The expansior(14) has the same strong-coupling limit in faking the first derivative to zercodd orders or, when it
D=3 andD=4— e dimensions, and it does not matter that Yields complex results, to taking the second derivative to
pu=C2t for D=3 or u=m for D=4— e since both quanti- 2€rc and selecting turning points. .

ties go to zero in the critical limit with the same powgr . After having determined the optimum at various ortler
With relation (14) betweenu and Ug, we obtain the bare it is still necessary to extrapolate the result to infinite order

coupling expansion of the renormalized square mass an'd_foo' The gener:_;\I largé- behavior Of, the strong-coupling
fields: limit has been derived from an analysis in the complex plane

in[2,13:

4(N+2
mZEZrlmézmé[l—(T)UB+4(N+2) ff~f*+ciexp—col' ™), (19

with constantsc; and c,>0. Knowing this behavior, a

4(N+5) 5 i i
( 2 )+ > U§—16(N+2) gr?EhmaI extrapolation procedure may be used to fifid
6 - .
To apply the above algorithm to critical exponents, we
4(N+5)(N+6) 53N+274 proceed as follows: LatV, be a function obtained from per-
X 3 + 5 turbation theory. It has an expansion
€ 3e
5N+3 -
+ o .
O e 15 W, (Up)= 3, Wil (20

Suppose that we also know this function has a leading power
2(N+2)_, 4 S€ o o
1+ ———u2— = (N+2)(N+8) behavioruf'® for large ug. The powerp/q is given by a

€ 3 logarithmic derivative

p=2,"pg= g

8 1
&2 €

dinw,_

dintg

X

Ug] . (16) gz (21)

These two expressions are sufficient to calculate the criticafhe right-hand-side is a power series representation of a
exponents andy and, via scaling relationg, all other' eXpPo- function of the type(12), with p/q being f* and the ap-
nents. Note that the value of the renormalized coupling conproach tof* in the form of poweral; /€. Equation(21) will

stant at the critical poini™ is not needed to obtainandy.  he ysed later for the determination of the critical exponents.
The expansion(14) is, however, useful for obtaining an ac- |f the series(20) goes to a constant in the strong-coupling

curate exponend of the approach to scaling. It was pointed |imijt, the exponenp is vanishing, and we are left with
out in[49] that v can also be deduced from the expansions

of v and y. However, to reach the same accuracy, this re- dinW.
quires always one more loop compared to the loop order we _" = (22)
are interested in. For this reason, we shall take the advantage dinug
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This equation can be solved far i.e., for . Note that Eq. tion of the critical exponents. We start from the definitions
(21) strictly holds forp#0. However, it can be shown that within the conventional renormalization formalism of the
this equation may be used also fo==0, i.e., that Eq(22) is  functions

a consistent equation for functions that go to a constant in the

strong-coupling limit. This is explained in Appendix A. In Mmoom
the following, we shall directly use Eq$21) and (22) for 7m:@7 ' (27)
two- and three-loop expansions where everything can be cal- B
culated analytically. We give below the associated formulas 3
re;L.JItlng from Eq.(17). Settingp=1+ €/ w, we find for L Yo Mﬁ'n Zy (28)
=2: B
2
*_=opt (fot+ fiplg+f,03)=f —p—ZE (23 B =ui (29
L=2= 0P (ToT T1pUgT ToUg 0T F §, T
while the three-loop results=3 lead to which, in the critical regimen3— 0, render the critical ex-
L ponentszy,=yy, and »= v} if the first two equations are
f’L‘=3=optﬁB(f0+ f,0g+ f2023+ fgﬁg) calculated at the fixed point* determined by the zero of the
L third function 8,. The derivative of8, atu* is the critical
1f,f, 2 2 f _3 exponent of the approach to scaling=d8,/du| .
—fom 3 f( 3r> 27 2(1 N, (24 Using the relation between the bare coupling constignt
and the reduced ong; given in Eq.(13), Egs.(27) and(28)
_ — — become
where fi=fp(p+1)/12f,=f,(2p—1),r=+1-3f f5/f5.
If the square root is imaginary, the optimal value is given by d m2
the unique turning point. Practically, and this is a virtue of Mn=—€——IN—=—e——In z (30
the analytic result, this square root is always imaginary for dinug  mg dinug
D=3, at least as for the exponedat The turning point con- )
dition leads to e d ¢> Y d_ Inz;", 31)
S — dinug qSB dinug
. 1,6, 215
~3=fo~ 3 ij 2_7f_§ (29 \where the renormalization constar#s * and Z,"* have

been explicitly given up to three loops in E¢$5) and(16),

e., to same expression as H@4), but with r=0. In the respectively. The associated power series expansiog of
caseD=4—¢ with e—0, r is real. However, fore the the exponents;, and» will now be treated with the help of
e-expansion of produces higher orders inthan the three- the formalism described in the previous section, up to two
loop approximation admits. Then, in boh=3 and the @and three loops.
e-expansion, Eq(25) is the relevant equation. A word of

caution is, nevertheless, necessary: The positive mabt C. Critical exponents from two-loop expansions
In order to calculate the two-loop expansions in the criti-
o =£(—1+r) (26) cal strong-coupling limit, we need to know to this order.
B 3f, - This will be calculated from Eq14). Dividing this series by

Ug, we know that the leading power behaviorgs— = is
has to be chosen in order to match the three-loop result with-1 sinceu is supposed to go to the constant value:
the two-loop one in the limif;—0. Doing so, it must be uuz*|y...=u*Ug’. Calculating the logarithmic derivative
assumed that, andf, are nonvanishing. When optimizing of Eq.(14) and expanding up to second ordeis, we have
with f,=0, it is straightforward to show that ff,f3>0, then
the optimum corresponds t§(f,—0)=0 and f;_;=f,. d u —4(N+8)_

The other possibilityf;=0, is also interesting since it oc- dInt nU_: fUB

curs in the determination of the exponemptlIt can be veri- B 7B

fied thatf;=0 implies taking the negative root=—1, so (N+8)2 3(3N+14)

that 0%(f,—0)=—2f,/(3f3) and f}="fy+4f3/(27f2). +1

This possibility has not been discussed in the previous works

= @32

[2,5,13. We now apply formula/A4). Combining with Eq.(23), we
identify
B. Critical exponents ) )
After the introduction to the resummation method to be =P [~4(N+8)/e] . (33
used in this work, we can now turn to the actual determina- 4 16 (N+8)%/ e?+3(3N+14)€]
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ie., modify the procedure. In Ref5], this was done by consid-
ering a different critical exponent
p2_1+ 3N+14 34
2 N1 y=v(2=7), (40)
from which we can deduce: with
1
€ € v= . 41
w (35 2= 7y (49

p—1 —14+21+3e(3N+14)/(N+8)2
To obtain their strong-coupling limit, we insert fay,, and »
It is identical to the result obtained [5]. As a check of Eq. their perturbative expansioit37) and(398), respectively, and
(35), we verify that it reproduces the well-known reexpand the resulting ratios in powerigf up to the second
e-expansion order. This gives

w.=e—3€*(3N+14)/(N+8)2. (36)

_ 2(N+8) ,
y=1+2(N+2)Ug~ 4(N+2)| = .

We refer the reader b,13] for plots of the function35) as
e goes from O to 1, and for a comparison with the unre-
summede-expansion. The strong-coupling limit @ may
also be calculated from E@gA1) with an analytic expression
different from Eq.(35), although numerically they are prac- 1 o
tically the same, and they certainly have the same »=3+(N+2)ug—2(N+2)
e-expansion49].

This determination ofw illustrates what we said in Sec.
Il, that in the minimal renormalization scheme the critical The strong-coupling limits are, usingf/4 from Eq.(34),
exponents lead to identical results =3 andD=4—¢

The critical exponenv itself has the expansion

2(N+8)
€

—(N-3)[Ug.

(43

dimensions. This will also be true for the critical exponents (N+2) ,3(3N+14)

to be calculated in the sequé0]. For this reason, we shall y=1+ 2(NT8)—e(N-4) e+ “Nts? | (44)

always keep track of to facilitate the comparison, although ( )

our work is inD =3 dimensions. Only for amplitude ratios to

be calculated later will such a comparison be impossible and  _ E 1 (N+2) c ,3(3N+14)

€ be set equal to 1 everywhere. 2 2(N+8)—€e(N—3) (N+8)2 '
Knowing o, we can now determine the exponenmtsand (45)

7m. According to Egs(30) and (31), we take the logarith- _ _ _ _
mic derivative of Eqs(15) and(16), reexpand the results up Their e-expansion are in agreement with=4— e results

to the second order E%, and obtain [5,13]. From these expressions we can recoyeusing the
relation »=2— vy/v. The result has now the correcexpan-
_ 2(N+8) |, sion:
m=4(N+2)ug—8(N+2)| ———+5|ug, (37
~ N+2 46
n=8(N+2)u3. (39) T oNTeR (46)

Evaluating 7., in the strong-coupling limit in the same way

This calculation ofn via v and y was made in[2,5] to
asw, i.e., following the algorithm(17), we find 7 " Y [2,5]

compensate the lack of a linear term in E8@). Let us point

2 [4(N+2)]2 out that, even if thee—expansion is not rgcovered, it is nev-
ertheless hidden in a direct resummation of E2B) to 7

=0. To see this, we add a small dummy linear tefm to

_P
=4 8(N+2)[2(N+8)/e+5]

) (N+2) X 23(3N+14) . the defining equatiofi31), leading to the expansion
T (N+8)+5e2| < (N+8)? _ 4(N+8)]_,
7={Ug+|8(N+2)—{———|u5. (47

For 5, the situation is less clear. [2,5], it was argued that

the two-loop result cannot be computed from E2p) since  Using Eqs.(23) and (34), this leads to the strong-coupling
no linear term inug is present. A direct application of the yalue

resummation algorithm would give an optimuifj =0, then

a value p=0 at two-loop order. This does not lead to the p? e
correcte-expansion, according to which the exponent starts (o 8(N+2)—4(N+8)/e’
with €2, i.e., with a nonvanishing two-loop contribution. To

apply variational perturbation theory, it is necessary towhich is zero for{=0. Consider, however, the-expansion

(48)
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of the right-hand-side performed at a finife

p?  le

774 4(N+8)

2(N+2) e
N+8 ¢

. (49)

If we now take the limit{—0, the right-hand-side starts
directly like €2. Together with the lowest-order value 1 of
p?l4, we obtain correctly Eq46).

For consistency, the different two-loop results #gronce
from Egs. (44) and (45), and oncen=0 from Eq. (48)

PHYSICAL REVIEW E63 056113

We can restrict ourselves to one loop since it corresponds to
a powerUé. The two-loop calculation was, however, needed
to getw correctly, which itself enters E456). With the help

of Eq. (23), we obtain

€ B € +3 3N+14 5
4(N+8) 4(N+8) 4 (N+8)°

2
P
*:—
ut=7 (57)

Since only two critical exponents are independgitt, 13,

should not be too far from each other. This can indeed bg| gther can be derived from Eq&0)—(54). These two-loop

verified by plotting the curveg=2— y/v against a few val-
ues ofN. The curves are all close to thg=0 axis for allN,
approaching it foN—oo.

Also for higher-loop ordersy could be obtained from the
strong-coupling limit ofy andv, or by taking a direct strong-
coupling limit. Variational perturbation theory does not

know which of these approaches should be better. Ulti-

expressions are only a lowest approximation to the exact
results. In the next section, we evaluate analytically the
strong-coupling limit of the exponents at the three-loop level.

D. Critical exponents from three-loop expansions

The three-loop calculations are algebraically more in-

mately, if we know enough terms in the series expansion, thgo|yed. Moreover, as far as the critical exponents are con-

extrapolation to infinite orde should certainly become in-
sensitive to which function is resummed.

cerned(we will see later that this is not necessarily true for
the amplitude functionsthe optimum of the functiofl?) is

One may wonder if it is possible to set up a unique opti-not given by the vanishing of the first derivative, but by a
mal function of the critical exponents from which to derive yming point, i.e., by the vanishing of the second derivative.
the strong-coupling limit. The answer to this question wouldag the three-loop order, this implies that the parametér

improve the theory considerably.

Eq. (24) is zero, leading to the three-loop strong-coupling

Collecting the different results of this section, we have thejimit result (25). It is this feature that renders the calculation

D=3 results

1

w= , 50
—1+2yJ1+3(3N+14)/(N+8)? 0
2N3+ 63N2+ 540N + 1492

= (51)
(N+8)?(N+20)
N3+ 31IN?+ 262N+ 714
= (52
(N+8)%(N+19
_2(N+2) 3(3N+14) -

Tm= 2N 21 (N+8)2 ®3

~2(N+2) (N+8)2+3(3N+14)

77 N+20 2(N+8)3+5(N+8)%+3(N+2)(3N+14)’

(54
1 3 3N+14
u* (55)

TANT8) 4 (N+i8)®

analytically manageable, involving only a cubic equation for
the determination op (withoutr =0, we would have had to
solve an eight-order equatiprin order to obtainw to three
loop, we generalize Eq32) to the same order, and find

u
1= — In:
dinug ug
—4(N+8)__ (N+8)* 3(3N+14)|_,
=——Ug+l >+ Ug
€ €
8(N+8)° 60(N+8)(3N+14)
- 63 " 62
+96§(3)(5N+22)+33N2+922\|+2960%
p Ug -
(58)
From this we extract the coefficienfg(i=0, . ..,3) of Eq.

(24). The argument of the square raothen turns out to be
negative, and the equation to be solved is &%). This is
true not only fore=1, but also for allee[0,1]. Since Eq.
(25) is a cubic equation fop, there are three solutions, one
of which is always negative, which we discard as unphysical,

where we also included the value of the renormalized COUpe4,ing us with two solutions. Only one of them is connected

pling constant at the IR-fixed point. It is obtained from the
one-loop series i of the expansior{14):

0. — MUZB_ (56)

B €

smoothly to the two-loop result. The purely algebraic form
of the solution, generalization of the square root coming
from solving Eq.(34), is somewhat too lengthy to be written
down here. As a check, we have derived its epsilon expan-
sion that reads
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3(3N+14)  96((3)(5N+22)(N+8)+33N3+ 214N+ 126N +2512
2+ S €~ 2 € (59
(N+8) 4(N+8)

Pe=

and leads to the correetexpansion forw=e€/(p—1):

3(3N+14) ) 96{(3)(5N+22)(N+8) + 33N3+538N2+ 4288\ + 9568
w,=€— e+ €, (60)
(N+8)2 4(N+8)*

which is the extension of Eq36) to the ordere®. This is to be compared with E¢17.15 of the textbook 13].
The trigonometric representation is, however, compact enough to be written down here explicitly, at leastlfor
Introducing an angle and two coefficientsg,by defined by

[13 776+ 4738\ + N?(8N+405) + 96(5N+22)£(3)]?
2[106+N(N+28)]{(N+8)[13 776+ 4738 + N?(8N+ 405 + 96(5N+22) £(3)]}°?

0= arcco%

1
X
[2 209 6641 040 160+ 162 98N+ 968N+ 184N*+ 672 N+8)(5N+22) £(3) 1372

X {67 181166 592 64 001 040 38M + 25893 312 00N>+ 5 641 828 480>+ 713 027 988I*+ 54 733 044M°
+2 760 15N®+88 33 N7+ 1440N8— 192N+ 8) (5N + 22)[ 4 084 864+ 1 952 48N+ 323 708M%+ 20 02N°®

+514N*1£(3) + 746 496 (N+8)(5N+22)£(3)1%} |, (61)
1
ap= (62)
446 336+ 213 280N + 35 3342+ 217N3+56N*— 864N+ 8)(5N+22)£(3)
bo=3V(N+8)[13776+ 473N+ N?(8N+405) + 96(5N+22)£(3)]
X \[2 209 664+ 1 040 160 + 162 98N+ 968N+ 184N*+672AN+8)(5N+22)£(3)], (63
the relevant root of E¢(25) can be written as
1 256 —27+6
p=—g+ 3 al106+ N(N+25)]?>—aghg co —3 (64)
For the physically interesting casbs=0, . .. ,4, weobtain the values foD =3 dimensions
N 0 1 2 3 4
p 2.41829 2.40384 2.38683 2.36910 2.35157
w 0.705073 0.712332 0.721069 0.730405 0.73988
o (Ref.[13]) 0.8035 0.7998 0.7948 0.7908
o (Ref.[18]) 0.812 0.799 0.789 0.782 0.774

where we also indicated the theoretical values given in Ré&18§.

Figure 1 illustrates the two- and three-loop critical exponents of the approach to seatief(p—1) as a function oN
calculated from Eqs(34) and (64), respectively. For comparison, we also give the three-loop unresummed (@8t
evaluated ak=1 and the theoretical values given in Tables 1 and 318]. The latter are based on a five-loop analysis
supplemented by a large loop order analysis.

Oncew is known to three loops, the other exponents and the strong-couplingifinuif the renormalized coupling constant
can be determined to the same order. To obtidinthe two-loop expansion af in powers ofug is enough since it is of order
O(Ug). Recall that the three-loop expansionufiig) is needed only to calculaie. From Eq.(14) we identify f,,f,,f5 and
use Eq.(25) [since the argument of the correspondmip Eq. (24) is negative to obtain the critical value
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_ e(N+8)p(p+1)(2p—1) 2¢(N+8)3(2p—1)3 ©5
122(N+8)°+3e(3N+14)] 272(N+8)%+3e(3N+14)]?
with p from Eq. (64). If we use instead the-expansion ofp given in Eq.(59), we obtain
€ 3 3N+14 _ 4544+ 176N+ 110N%—33N3—96(N+8)(5N+22)/(3)
u*: + — €2+ 63' (66)
4(N+8) 4 (N+8)° 32(N+8)°

In the same way, we find the strong-coupling limit of the critical exponerdasd v, as defined in Eq$40) and(41) together
with Egs.(30) and(31), the latter two exponents being obtained from the niaSsand wave functior{16) renormalization,
respectively. The three-loop perturbative expansions are

_ 2(N+8) _2 8(N+8)2 4(2N?>—N-106)
y=1+2(N+2)Ug—4(N+2)| ————(N—4) Uz +4(N+2) s .
€
+194+N(2N+17) |ug, (67)
1 _ 2(N+8) _2
v=5+(N+2)Ug—2(N+2)|——~(N-3)|ug
4(N+8)% 2(2N?+N-90) 4
+4(N+2) S +95+N(N+9) [u3, (68)
€

from which it is straightforward to identify the expansion coefficiefys. . . ,f5 that enter Eq(25), to obtain

B e(N+2)[e(N—=4)—2(N+8)]p(p+1)(2p—1)
3[8(N+8)?—4e(2N?>—N—106) + €2(2N?+ 17N+ 194)]

y=1

8e(N+2)[e(N—4)—2(N+8)13(2p—1)3

T8N 8)2— 4c(2N?— N— 106 + €2(2N2+ 17N+ 194 (69
1 e(N+2)[e(N=3)=2(N+8)]p(p+1)(2p—1) N e(N+2)[e(N—3)—2(N+8)]3(2p—1)3
=5 12 4(N+8)2—2€(2N?+N—90) + €2(N?+9N+95)] 27 4(N+8)2—2e(2N2+N—90) + €(N?>+9N+95) ]’
(70

wherep for e=1 can be obtained from E@§64). The associated-expansions can be obtained using Ef). They read

N+2 (N+2)(N?+22N+52) 2+(N+2)[3104+ 2496N -+ 664N>+ 44N>+ N*—48(N+8)(5N+22){(3)]
€ €

=1
TRANES T ante)? 8(N+8)° ’
(73)
—1+ N+2 +(N+2)(N+3)(N+20) )
"T27aN+e) ¢ 8(N+8)°
(N+2)[8640+ 590N+ 1412N*+89IN>+2N*—96(N+8)(5N+22){(3)]

32(N+8)°
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(N+2) , (N+2)(N*-56N-272 |
2 ~ n= € — €.
~< 2(N+8)2? 8(N+8)*

(73

Let us also calculate directly the strong coupling limitpf
1 from its definition(31):

7=8(N+2)u53—8(N+2)(N+8)

8
—+ 1)@. (74)

FIG. 1. Two-loop(short-dashedand three-loogsolid) critical

exponentw for different O(N) symmetries. For comparison, the At the two-loop level, the result was zero. At the three-loop
e-expansion(mixed-dashe and the theoretical values dfl8]  |eyel the calculation is different from that of and v be-
(dots are also given. cause there is no linear term . This has already been

. _ .. discussed after Eq.26): although we are working at the
Figures 2 and 3 illustrate the two- and three-loop criticaliyee joop level, the optimum of the variational perturbation
exponentsy andw, respectively, as a function &. They are theory is not governed by a turning point but by an extre-
given by Eqs{51) and(69) for y and by Eqs(52) and(70) mum for which the sign of the roatis the opposite to the

for v. For completeness, we also plot theexpanspns{?l) usual case. The solution corresponds to—1 and the op-
and (72) of the exponents, as well as the theoretical values,

quoted in Tables 1 and 3 $18]. Contrary to the case of the UMum isg=—2f,/(3f3), so that
critical exponentw, we see that the two- and three-loop criti-
cal exponents are very close together. This is a virtue of

working self-consistently witho obtained at the same loop _ 4 ?g _32 (2p—1)3(N+2) )
order. In[2,5], the extrapolated to infinite loop order was = 2_7?5_2_7 (N+8)2(8+ )2 € (75

used instead. This implies that each loop-order resultyfor
and v was not very close to its asymptotic lim{itontrary to
what we ge_t hene Hovx_/ever, the extrapolauon formula9) With Eq. (59), this leads again to the correetexpansion
works precisely for this case, and very precise extrapolateglm) The difference between=2— y/v and Eq.(75) at €
results fory and v could be obtained. In our present Work, __ ;"o iy ctrated in Fig. 4 that also shows the direct evalua-
t'he. critical exponents are not very far from their a:symptotlction of the e-expansion serie&’3) as well as the theoretical
limit, already at the two- and three-loop level. However, thevalues uoted in Tables 2 and 3 [df]

extrapolation formuld19) cannot be used. It is not yet clear q '

to the authors how it will be possible to extrapolate the five- It is amusing to see that the expansion is the best ap-

loop results obtained using the present formalism. This quesg—irzg{nsgﬁgé(;%l)lovéi% b;/ri:]he tﬁgogi?fgr(()aﬁ“rneidllgltv% t::e
tion is left aside for a future work. We also note in passing : paring '

; o .
that the e-expansion result is not too far from the values that they differ by about_30 %. This is due to ‘h‘? apsolute
obtained in the strong-coupling limit. smallness of;y. The_ error is smajl compar_e_d to unity.

The critical exponent; is obtained using 2 /v, with y To end this section we also give the critical expongpt

. Up to three loops, the bare perturbation expansion reads,
and v from Eq. (69) and (70), respectively. It has the from Eqs.(15) and (30),

expansion
2 1
1.75
] 0.
1.5 . -
1.25, _—==" 0.
1
¥ v
0.75 0.4
0.5 0.2
0.25
2 4 6 8 10 N 2 4 6 8 10 N
FIG. 2. Two-loop(short-dashedand three-loogsolid) critical FIG. 3. Two-loop(short-dashedand three-loogsolid) critical
exponenty. For comparison, the-expansion(short- and long- exponentv. For comparison, thes-expansion(short- and long-
dashedl and the theoretical values pt8] (dotg are also given. dashed and the theoretical values pt8] (dotg are also given.
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0.05
n

0.04 e

Pl ce o -
0.03 -~7777" Seeel_ Toe-l
0.02 "
0.01

2 4 6 8 10N

FIG. 4. Two-loop(short-dashedand three-loofsolid) critical
exponentyn from the definition 2- y/v. For comparison, the ex-
pansion(short- and long-dashgd», from the strong-coupling limit

of the direct(medium-dashedseries(75) and the theoretical values

of [18] (dot9 are also given.
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2 4 6 8 10 N

FIG. 5. Two-loop(short-dashedand three-loogsolid) critical
exponenty,, from the definition 2- v~1. For comparison, the
expansion(short- and long-dashgds,, from the strong-coupling
limit of the direct (medium-dashedtwo-loop (39) and three-loop
(long-dashefi series(77) and the theoretical values ¢18] (dotg
are also given.

2(N+8
Pm=4(N+2)ug—8(N+2) ¥+5 ug+16(N+2) .- e(N+2)(2N+16+5€)p(p+1)(2p—1)
™ 3[4(N+8)2+ (38N +244) + 3€2(5N + 37)]
4(N+8)% 2(19N+122 4 3 3
X —+ " +3(5N+37) |ug, (76) B 4e(N+2)(2N+16+5€)°(2p—1)
¢ 27 4(N+8)%+ (38N +244) + 3€2(5N+37) 2
from which we deduce the strong-coupling limit wjghfrom (77
Eq. (64) Its € expansion is
|
N+2 (N+2)(13N+44) , (N+2)[5312+267N+452N?—3N3~96(N+8)(5N+22){(3)]
P= et 2+ e. (79
N+8 2(N+8)3 8(N+8)°
The result(??) is analytically d_ifferent put nur_nericglly close 1 (N+2)(N+19p(p+1)(2p—1)
to that obtained via the scaling relatigal), implying 7., y= §+ 5
=2—v"1, as illustrated in Fig. 5. For completeness, the fig- 12(N“+7IN+531)
ure also shows the expansion78) and the theoretical val- N+2)(N+193(20—1)3
ues quoted in Tables 2 and 3 [df8]. — ( X 9(2p~1) (81)
We see a better agreement with the theoretical values 27(N*+ 71N +531)
quoted from[18] when the exponent is evaluated in the
strong-coupling limit of the direct serig89) and(77). This (N+2)(2N+2D)p(p+1)(2p—1)
was also the same for the exponent Mm= 2] i
Collecting the different results of this section, we have the 3(AN"+11MN+611
analytical form of theD =3 dimensions critical exponents in A(N+2)(2N+21)3%(2p—1)3
the three-loop order - (82
27(4N?+ 11N+ 611)2
1 3
w=—1, (79 _ 32 (2p—1)%(N+2) 3
P 7 2187 (N+8)2
1 (N+2)(N+20)p(p+1)(2p—1) «_ (N+8)p(p+1)(2p—1)
’ 3(2N2+14N+1130 122(N+8)?+3(3N+14)]
8(N+2)(N+20)3(2p—1)3 2(N+8)3(2p—1)3
~ B(N+2)(N+20°%(2p—1) 0 (N+8)%2p—1) 80

27(2N?+ 14N+ 11302

272(N+8)2+3(3N+14) 1%’
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wherep is given in Eq.(64). For » and »,,, we took the strong-coupling limit of the direct expansions: &§) for » and Eq.
(77) for n,,. These results have to be compared with the two-loop ones given in(F}s(54).
For completeness, we give below the table of the critical exponents to three loops and the comparison wiil8 Réfs.

N 0 1 2 3 4
y 1.16455 1.2338 1.29426 1.34697 1.39307
y (Ref.[13]) 1.1576 1.2349 1.3105 1.3830
v (Ref.[18]) 1.1596 1.2396 1.3169 1.3895 1.456
v 0.587376 0.623381 0.654552 0.681561 0.705071
v (Ref.[13]) 0.5874 0.6292 0.6697 0.7081
v (Ref.[18]) 0.5882 0.6304 0.6703 0.7073 0.741
T 0.311607 0.421796 0.509799 0.580684 0.638337
7m (Ref.[13]) 0.2976 0.4107 0.5068 0.5878
7m (Ref.[18]) 0.2999 0.4137 0.5081 0.5862 0.6505
7 0.0258218 0.029917 0.031452 0.0315846 0.03096
7 (Ref.[13]) 0.0316 0.0373 0.0396 0.0367
7 (Ref.[18)]) 0.0284 0.0335 0.0354 0.0355 0.0350

They cannot compete with the five-loop calculation of We have explained in detail in the first part of this paper
[2-6,13,18. However, our results are analytical, and alreadythat it is unnecessary to go to the renormalized theory since
close to the asymptotic limit although we made no assumpall results can be obtained from the strong-coupling limit of
tion about the large-order behavior of the theory. We conthe bare theory. In the literature, the effective potential is
sider this as promising. In a subsequent publication, we wilgiven in terms of the renormalized quantitig®,41,44. To
present a numerical calculation up to five loops, with large-apply our theory, we shall rewrite the expressions back in the
order behavior information included, of our self-consistentbare form, using Eq(14).
formalism.

A. Available expansions
IV. CALCULATION OF AMPLITUDE FUNCTIONS

AND RATIOS Let us list the most important available amplitude func-
_ tions derived from the minimally renormalized modellat
From now on, we shall focus entirely upon tle=3- =3 at vanishing external magnetic fielts. Up to two

dimensions model. As we mentioned in the intrOdUCtion, it iS|oopS, they can be found in Réﬂﬁ] the square of the order
only for the critical exponents that the minimal subtractionparameteM2=(¢3) below T, :

scheme leads to the same resummed values botb fo8

and D=4-e¢. For this reason, it made sense to study the 1 2
e-expansions of the critical exponents, which was also useful ~ T¢=35— 7|57, (160-82N)+ —(N-1)In3
for comparing with calculations in 4e dimensions. The (85)
reason for this equality is the mass independence of the

renormalization constants in this MS scheme. The mass irthe stiffness of phase fluctuations beldw (some authors
dependence implies a decomposition of the correlation funceall this helicity modulug53]) Y:

tions into amplitude functions and power parts, for which the

u,

latter can be evaluated in the symmetric phase. The ampli- 11 1
tude functions, however, depend on being in the ordered or 'Y~ gg T3 ™" 51(2378_ 68N)+8(N—3)In3|u,
disordered phase. Moreover, the situation is complicated for (86)

N>1 by the presence of Goldstone singularities, most of
which have to be canceled at the end of the calculations: onl{he g° part of the transverse susceptibilip :
the physical singularities, for example, those occurring in the

transverse susceptibilities, should stay at the end of the cal- fo—1+ §u+
culations. xT

For this reason, apart from the three-loop wdid], no

three- or higher-loop calculation has been done Nor1  the specific hea€~ above and below:
belowT., even numerically. The only relatively easy case is

488
T—4N—128|n3 u?, (87

N=1 for which extensive numerical work has been done Fi=—N=2N(N+2)u, (88)
below T, up to five-loop ordef21,25,4Q. AboveT., all N 1

can be treated in the same wig0,24,51. In the latter ref- _ .

erence the critical exponentg and »,,, have even been ob- F- 2u 4+8(10-Nu, (89
tained to seven loops, with resummation performed in

[3,13,21,52 the isotropic susceptibility abovg, [55]
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92 ) where Li(x)=2_,x"/n? is the dilogarithmic functiofi54],
fr, =17 57 (N+2)u’, (90 andc, andc, are two numerical constants given by a single
variable integration over elementary functidi®$,42:
the amplitude function of the susceptibility beldw, which

we obtain taking the inverse of the two loop numerical ex-
) . ' . 1 dx 3 3+x X
pansion giver(up to five loopg in [40]: 1 " I+ L4 =
0.6—2x2 4 2+Xx  2+X
f, =1+18u+164.441° (92
3+x X 2+x
The latter quantity is restricted fd=1. X|In 3 + 2% n 2
From the series expansion QIT andfy , one sees that the
relation ~0.021737576 333, (96)
fy=4xf,f (92
Y o w? +\/§f1 dx I X +In(1+x)
: - - . Cr=—— n
is satisfied to two loops. This is not a surprise: the bare 2 42 o VI+x2| 1+x X

helicity modulus, defined a\ézzaFB/&qZ|q:0 wherel'g is
the free energy, can be shovat least to two loop§46)) to ~0.973771427. (97)
be identical toM3(dx7 */99%)|4—o. This is a consequence of

a Ward identity for the broken @{)-symmetry belowT .

In Ref.[42], the perturbation expansions of the amplitudey,
functions for the order parameter and for the specific heaﬁ
have been carried to three loops. The additional terms arg
(we use the notatiofi; = =;f{"u'):

For completeness, we give in Appendix B some hints on
w to obtain these amplitude functions. For the details, see
efs.[41,46. Our own contribution concerns the suscepti-
lities above and below . : Using the three-loop integrals
available in the literatur@42,35, we have been able to cal-

culate analytically the thee-loop extension of the amplitude

1
1=~ Tos0n | 2500N?+65 10N +29 056+ 8640 5N of the isotropic susceptibility, :

+22)£(3)+58 32, — 157%( 19N?+ 643N + 499)

X+

f(3)=—E(N+2)(N+8)
27

1
—180(64N?+ 640N +457) Li2< -3 —80(194N?
3 1
_ 2 — 7
+1616N— 1675In 3+ 16(860N2-+ 8357 — 7867)In 2 x| 2Lt 12m+ 1281ny + 144“2( 3) (98
+270QN—1)| —8c,+ 32Li2< _ 1) +42Li2(£) as well as the three-loop amplitude function of the suscepti-
2 3 bility below T, for N=1:
—64Liy(—2)+21(In3)%+16(In 2)2—96(In 2) 1480
fy =1+18u+ ——u?+| 107211664, +37°
X(In3) ] (93
4 1]
7 4 +10480In3 +36Liy| — 3 |u°. (99
F&=—4aN(N+2) N—2—7+4In§), (94)

1 Our analytical two-loop coefficient 1480/9 agrees with the
F®)= — = (108(N2+ 346N+ 31120 — 128 5N+ 22)£(3) numerical coefficient given in Ec[91)._ We shall comment

27 on the three-loop one later. The details of the calculation are
given in Appendixes C and D.

2 . 1
—864c;+ 5772(9N2+N+17)+216L|2 -3
B. Amplitude ratios

—32(4N+17)In3+ 3—2(31N+95)In2 Besides the amplitude functions, we shall also evaluate
3 three important ratios: the amplitude ratio of the heat capac-
1 ity, the universal combinatioR., and the amplitude ratio of
_ _) the susceptibilities foN=1. For a review of amplitude ra-
2 tios, seg56]. The relevant equations for their determination
1 is given in Appendix E. One of the best measured amplitude
+6Li2(—) —32Liy(—2)+3(In3)%+8(In 2)? ratios was mentioned in the introduction: it is the amplitude
3 ratio of the specific heat of superfluid helium above and be-
low T., corresponding ttN=2. It can, however, be defined
, (950  for all N and, using our notation, can be written[&8,42]

+4(N- 1){ —8c,+16Li,

—48(In2)(In 3)
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A+

e , (100

b+)“ 4VB* + aF*%
b~ 4yB* + aF*

wherea and v are critical exponents an@* is the vacuum

PHYSICAL REVIEW E 63 056113

In the following we shall, however, consider E4.04). We
hope than the analytical discrepancy between (EQ3) and
(104 will soon be resolved.

The third ratio to be investigated is the amplitude ratio of
the susceptibilities foN= 1. Such a ratio can also be defined

renormalization group function associated with the additivefor the longitudinal susceptibilities fdi>1. This is a non-
renormalization constant of the vacuum, evaluated at th@ivial task requiring an appropriate descriptifs7] due to

critical point. It is known to five loops in the minimal sub-

traction schem¢42,43 and reads, up to three loops,

N
uB==u+3N(N+2)us.

5 (101

The ratiob™/b™ is equal to[41]: b™/b™=2vP*/[(3/2)
—2vP*], whereP is a polynomial inu, related to the scale
aboveT,. Its analytical derivation is given in Appendix F
and reads, up to three loops,

8
P,=1-2(N+2)u+4(N+2)u’+ 2—7(N+2)

3
X| —3(63N+572) + 24N+ 8) w2+ 4(43N + 182)|nZ

.

us. (102

+288(N+8)Li2(

The experimental test for the validity of the strong-coupling

expansion is to match E¢L00) with (1) for N=2. We shall
see in the next subsection if this can be done.

The ratioR¢ is defined by the universal combination of

amplitudes[56] Rc=T""A*/A2, whereI'" and A, are the
leading amplitudes of the isotropic susceptibility abdve
and of the order parameter beldw, respectively. This ratio
has been written in Ref42] as

(2vP*)2728  4uB*+aF* 1
(3/2—2vP*)"26 167w

c et (103

b Xt

All the quantities have been defined previously, but for
which may be taken from the hyperscaling relatigh
=y(D—-2+7)2=v(1+ 7n)/2 in D=3 dimensions. How-
ever, our own calculation foR: gives a correction to Eq.
(103:

(2VP1)271/(D72)

(3/2—2vP%) (P2

(2vP*)2-28 b+)
(3/2-2vP*) 28\ b~

4vB* +aF% 1
167 fsz

C

"T4vB* +aF% 1
16w

*£x
b Xy

(104

Since this disagrees with E(L03), we give our derivation of

Goldstone singularities and this will not be investigated here.
Using the notation 0f40,55, the amplitude ratio can be

written as
rt+ B f;(§+>2_f; ( b+>2v
r~ f;*(+ & fL b~

where the ratiob*/b~ has been defined below E(L00),
and where the quantities are restricted\te- 1.

The question arises now to calculate the amplitude func-
tions and ratios. As for the case of the critical exponents, we
shall proceed also by order, starting with two loops.

(105

C. Amplitude functions from two-loop expansions

In order to apply strong-coupling theory to the amplitude
functions (85)—(88), we must reexpand them in powers of
the bare couplingig using Eq.(14) up to two loops. The
strong-coupling limit is then given by the general expression
(23), with p?/4 given by Eq.(34) ate=1.

We start considering,,. To deal with a Taylor series, as
assumed in the general theory in Sec. lll A, we consider
ufy,:

1 1 2
__ - - _ 2
uty=g5—+|57-(160-82N)+ —(N 1)In3}uB.
(106)

This series is special because the linear terimginis absent:
the optimal valug23) is therefore given byig =0, and the
two-loop value ofuf, in the strong-coupling limit is the
same as the lowest-order value, which is independeit of

*fx T
u f¢ 327

(107

It is worth pointing out here the effect of the special choice
for Ap in Eqg. (8). We mentioned there that this coefficient
did not have any influence upon the critical exponent. This is
because the factoAp can be absorbed ing to give ug,
implying the same strong-coupling limit. However, ampli-
tude functions aré\p dependent. In particular, farf,, the
chosen valueA;=1/(4m) has made the linear term disap-
pear. One sees that this choice corresponds to an optimaliza-
tion: the zero order, the one-loop and the two-loop optimum
values coincide. One expects then that the third-loop order

this result in Appendix E. We have verified that the numeri-contributes only to a small deviation from it. This is indeed

cal values coming from Eq$103) and(104) do agree within
1%. This is traced back to the small value of the expongnt

the case, as will be shown in the next section, and confirm
previous expectations38,41].
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The same situation holds for the amplitude functi®0)  the zero-order result, =1 are small for allN. This is in
of the susceptibility abovd@ .. The linear term inu being

absent, the optimal value to two loops is independenil of contrast tof ; and fy, where two-loop corrections are im-

i portant.
and is equal to We now turn to the amplitude functios. that enter the
f* =1 (108 heat capacity above and beloli. At the two-loop level,
X+ '

they are given by Eqg88) and(89), respectively. With the
relation between the renormalized and bare coupling con-

The strong-coupling limit of the amplitude function of the stant(14) to two loops, we have the expansions

stiffness of phase fluctuations and of ty&dependent part
of the transverse susceptibility can also be easily determined. uF,=—Nug+2N(N+14)u3, (1149
The bare expansion is obtained combining E@S), (87),

and(14) to two loops: 1 B
B uF,=§—4uB+8(N+26)u§. (115
1 ug 1 —s
fy==+ — +|—(1802- 755N) + 8(N—3)In 3|u3, . :
ufy=g+3 * 53 )+ 8 )in }UB With the help of Egs(23) and(34), we obtain
(109
- N N2+ 25N+106 116
8_ 4 UWFl=-g — > —,
fi=1%3Us~ 5(1IN-58+96IN3u5. (110 2 (N+8)%(N+14)
. : . : 1 N?+25N+106
The corresponding optima are given by E83) with Eq. UWFE*=——2—— "~ (117
; . 2 2
(34) from which we obtain (N+8)°(N+26)
2, n In [41_,42, uF, was not a gopd candidate for Borgl re-
urfr== 6(N"+25N+106) , summation because its expansion(88) lacks alternating
8 (N+8)’[ 755N~ 1802~ (432N —1296)n 3] signs of its coefficients. This problem is absent in variational

(111 perturbation theory since the expansidri4) in term of the
bare coupling constanig does have alternating sign. The
. 16(N?+ 25N + 106) latter is then expected to lead to a reliable re§li6). This
oLt 3(N+8)7[1IN-58+963]’ (112 will be confirmed by the three-loop result of the next section.
To apply the usual Borel resummation at the level of the

The result (11D has a pole for N=2(648In3 renormalized quantities, Ref§41,42 wrote the amplitude

—901)/(432In3-755)~1.349, indicating that the strong- 'atC Of the heat capacity as
coupling result is unreliable. We expect the pole to be an A b+) @ E* _p*
artifact of the limitation to two that disappears at the three- - = _) ( 1_a‘—+> ' (118
loop level. Sincdy is not known to three-loops, we can only A \b” 4vB* + oF*

give plausible arguments for this expectation, suggested by

the calculation ofu* (F* —F*) up to three loops in Eq. instead of Eq(100), and resummed(F_—F.) anduF_,
(136), where a similar pole arises at the two-loop level butavoiding the direct resummation ofF, . For comparison,
disappears for three loops due to the interplay of the coeffiwe give below the optimal value of the differencgF -
cients of the loop expansion. The trouble with EG1l)  —F.). Itis determined from the expansio(88) and (89).
derives from the fact that the term of ordef in Eq. (109  Using Eq.(14), it yields

changes sign for the mentioned value\s¥ 1.349, and at the 1

two-loop level nothing can compensate this. This is in con-  y(F_—F )= = +(N—4)Ug—2(N2+ 10N— 104 U3.
trast with critical exponents that were observed to be alter- 2

nating series in powers afg. The result(112) for fy s (119

smooth for all pOS|t|Vd\| A more reliable result fof; than Its Strong_coup”ng limit iS, from Eqi23) and (34)
the singular Eq(111) can therefore be obtained by combin-
ing Eq. (107) with Eq. (112 via relation(92), leading to 1 (N—4)%(N?+ 25N+ 106)

u*(F*—F%)=5+ .
( V=2 2(N+8)2(N2+ 10N — 104)
(120

fE=1f* /8. (113

Note that forN=4, far away from the pole, the two results The latter expression diverges for a positive valueNcf
(111) and(113) agree within 2%. —5+/129~6.358. Then, the difference(F_. —F_) is not

It is worth pointing out that an evaluation of the renor- the good quantity for the strong-coupling limit at the two-
malized expressio(87) at the critical pointu* given by eq. loop level. We should rather evaluatd-, anduF_ sepa-
(55) leads to a result compatible with E@L12) within less rately in the amplitude ratiq100), instead of using the
that 1%. This is due to the fact that higher-order correction taequivalent expressiof118). We shall see in the next section
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'\ Combining with the unit valu¢108) of f*+ , we have a ratio
‘ th/in identical to Eq.(124). However, this ratio might as

\ wH(F* — F1) well be determined as the strong-coupling limit of its pertur-
- bative expansion, instead of evaluating independently the
T strong-coupling limit of the numerator and the denominator.
""""""""" The relevant equation is given in Appendix D: Using the
two-loop expansion of EqD6), we have, with Eqs(23) and

(34),

N Y RN
v

o O o O

] Y7 1420 " 335 (129

N (U)*_ p?3x18 751
X+

FIG. 6. Comparison between the two-loop strong-coupling limit
of u*(F* —F%) andu*AF%.
D. Amplitude functions from three-loop expansions

that the pole ofu* (F* —F*) is an artifact of the two-loop Some of the amplitude functions have been obtained up to
calculation. A similar conclusion was also obtained for thethe three-loop order. We now turn to their strong-coupling
strong-coupling limit offy, see Eqs(111) and(113. For  |imit. This is done by applying Eqg24), (25), and (64) to
N<4 and forN>—5+ /129, the two-loop expansiofl19 the different amplitude expansions.
is alternating, and we expect that the strong-coupling result We start with the amplitude function of the square of the
(120 is reliable. As an indication for this, we compare Eq. order parameter. Combining the two-loop expansi8b)
(120 with the difference of the optimized*F% values with the three-loop terni?’ (93), and using also the relation
given in Egs.(116) and(117): between the bare and renormalized coupling consib)t

we have the three-loop expansion

1 N2+25N+106/ 2 N
UAFL =5 - 2 \N+26 2(N+14)]" o 2
(N+8) + (N+14) Ufy=ns—+|5-—(160-82N)+ —(N—1)In 3[U3
327 | 27w T
(121

In Fig. 6, we compare the two curves20 and(121). IR n L

As far as the amplitude ratio of the heat capa¢it90), or f5'~8(N+8) 2777(160_ B2N)
Eq. (118, is concerned, we still need to determine the
strong-coupling limit of the renormalization group function + E(N—l)ln3 ]ﬁ,_ (126)
B(u) of the vacuun(101) and of the polynomiaP . defined ™ B

in Eq. (102. Because there is no contribution of the two-
loop order to Eq(101), its strong-coupling limit is From this, we read off the expansion coefficients
fo.f1,f2,f5 entering Eqs(24), (25), and(64). Since the lin-
ear termf, vanishes, we have to follow the development
below Eq.(26), adapting it to the present case. This devel-
opment was done assuming a series with alternating sign
Since the optimal two-loop result is identical to the one-loopsince the expansions of the critical exponents had this prop-
result, it is clear that we may expect the large order limit erty. Here, this is no longer true. Consider once more the
— to differ only little from N/2. This has been confirmed derivation of the strong-coupling limit following from the
in the f|ve-_Ioop resummation perforr_ned_ﬁdll], and will b_e optimal value off = f,+ f20§+f30%: 0% (2f,+ 3f50%)=0.
also seen in our three-loop calculation in the next section. . L ~x —

Two solutions are possibldiz =0 and g = —2f,/(3f3).

The polynomialP .. given in Eq.(102) is evaluated in the The latt | t for the critical tThis d
strong-coupling limit using the same lines. The starting point € latter was reievant for the critical exponsntinis does
ot mean that the other solution has to be rejected. In fact,

is the expansion in powers of the bare coupling constan:EI K h £ th . .
given in Eq.(F4) of Appendix F. Its two-loop part combined '°0king at the nature of the extremuminimum or maxi-

*R* — *E
u*B*=u > (122

with Egs.(23) and (34) leads to mum), we see directly that the first solution corresponds to
. (N+2)(N?+ 25N+ 106) *f —
P*=1- 5 . (123 — =2f,, (127
(N+8)2(2N+17) I _ox o
o=

The last amplitude we shall calculate using strong-coupling
theory isf, . From Eqs(23) and(34) atN=1, and from the ~ while the other leads to

two-loop part of Eq(D3), we find, with Eqs(23) and(34),
218 —

P = 1+9pZ 25— 211/103. (124 JUg

=—2f,. (128
Og=0% =—2f,/(3f3)
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If one solution is a maximum, the other one is a minimum.problem of a quadratic equation iy, see Eq.(126). We
Looking for the sign off_2 in Eq. (126), we see that it is know for this function that, because no linear term is present,
positive for N<N,, with N,=(80-27In3)/(41-27In3) the strong-coupling limit isu*f ,=1/(32m). This implies
~4.439 92, corresponding to a maximum, and negativéNfor that{f =0 at this point, i.e., that the maximum solution has
greater, corresponding to a minimum. Variational perturbato be chosen. By continuity, this remains true in a neighbor-
tion theory at loop ordek >1 says nothing about the nature hood. The nature of the solution can only be changed when
of the extremum. It might be a minimum or a maximum. In hoth solutions are equal, i.e., fbrsmaller than its valudl ;
quantum mechanics, this has been explained in the fitok  makingf, vanish. BelowN ;, we can imagine that we have

In quantum field theory, the exponentillustrates this: we g interchange of solutions, and that the minimum has to be
had chosen the maximuprecall Eq.(79)]. In this way, the  chasen. In this case, we would hawef*,=1/(32x) for all
e-expansion was obtained. Taking the solutigh=0, cor- N. If we decide to keep the maximum¢for all which we
responding to the minimum, we would have obtained thecould prove to be true only foN=N,, this would imply

three-loop result »=0. The lack of reproducing the ax o .
e-expansion gives a hint that the maximum solution has to b8t 0 = —2f2/(3f3) has to be chosen beloW,, and U5

chosen. In the case df, we can also argue that the maxi- =0 above. BelowN,, we havef* =fo+413/(27f3), as was
mum solution has to be chosen, although here there is nthe case for the critical exponent, while aboveN,, the
e-expansion available, by definition of the model. However,solution isf* =f,. The strong-coupling limit of , to three
at the point wheré;=0, we have to recover an optimization loops is then

[(160—82N)/(277)+2(N—1)(In3)/7]3 (80—27|n3

{15)—8(N+8)[(160-82N)/(27m) +2(N-1)(In3)/w]}>  |41-27In3 N) (129

u*f*:i+i(2 -1)3
¢~ 327 27°“P

with p given by Eq.(64), and where®(x) is the step func- that it would appear that the optimal value is valid almost
tion of Heaviside, being equal to 1 far>0 and being van- everywhere. In fact, since the pole gives a very peaked con-
ishing forx<<0. As mentioned, we cannot be assured that fortribution, a calculation at fixed integer valuefwvould have
N<N, the maximum has still to be chosen. The possibilitymissed it completely, making one to believe that the resum-
that the three-loop result is identical to the two-loop resultmation was correct. But this would not be true, the true so-
remains. Would the above analysis not be performed, i.elution being Eq.(129 everywhere. We give in Fig. 7 the
choosing the minimum solution everywhere, we would havecomparison between our two- and three-loop results. Our
obtained Eq.(129 without the step function, meaning the values forN<N, lie above the two-loop result 1/(33 ob-
presence of a pole at the vanishing of the coefficient of théained in Eq.(107). This is also the case for the resummed
cubic term in Eq.(126), i.e., for N~4.92915. We have values given if42] for N=2,3 as can be seen in the follow-
checked that the solution is sharply peaked near this value sog:

N 0 1 2 3 4 N>N,=(80-27In3)/(41-27In3)
% (2 loopy 1/(32m) 1/(327) 1/(32m) 1/(32m)  1/(32m) 1/(32)=0.00994718
u*f% (3loopg 0.0105523 0.0102518 0.0100884 0.00999735 0.00995195 2)(32

u*f* (Ref.[42)) 0.010099 0.00997

The agreement between our two- and three-loop order14) between the bare and renormalized coupling constant,
and between our work arfd?2], is excellent. It is due to the the three-loop bare extension of E¢$14) and (115 are
fact that the term of order zero contains almost all informa-

tion on this amplitude. . UF, = — NUg+ 2N(N+ 14)Tg +[F®— 24N(7N+46)Tu3,
The three-loop amplitude functionsF, and uF_ are
given by Eqs(88), (94), (89), and(95). As in the case of the (130

previous amplitudes, the present expansions may not be al-
ternating. This may make the argument of the paranteiter
Eq (24) pOSitiVG, so that EC(.24) has to be used to obtain the uF_ = 1 4UB+ 8(N + ZG)Ué+ [F(_3)_48q3N+ 22)]uﬁB

strong-coupling limit rather than ER5). However, Eq(25) 2

remains correct for alN for uF,, while the alternating (13D
property is lost foruF _ for N=40. Since the physical cases

correspond toN=0,1,2,3,4, we can ignore the alternative This allows to identify the appropriafg,f;,f,,f5 functions
Eq. (24) and Eq.(25) is used throughout. Using the relation to enter Eq.(25). In the strong-coupling limit, we obtain
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2N2(N+14)p(p+1)(2p—1)

*Ck* —
urF* =

PHYSICAL REVIEW E 63 056113

2[2N(N+14)13(2p—1)3

*F*

6[FP)—24N(7N+46)]

_1, 32AN+26)p(p+1)(2p=1)

: 132
27 F®)— 24N(7N+46)]? (132

2[8(N+26)13(2p—1)°

2

(133

6[F®—-4803N+22)] 27F®—-4803N+22)]?’

with p from Eq. (64).
Figures 8 and 9 show the comparison between the two-loop rg$lilt§) and (117)] of the previous section and the
corresponding three-loop resufig€ 32 and(133)], as well as a comparison with values giverf4i], when available.

To be more precise concerning the comparison Wth, we give the appropriate values of F* :

N 0 1 2 3 4

u*F* (2 loop9 0.372596 0.379287 0.385714 0.391707 0.397222
u*F* (3 loop9 0.374166 0.378474 0.384065 0.389883 0.395484
u*F* (Ref.[41]) 0.3687 0.384 0.387

From this, we see that that the strong-coupling limit re-The coefficient of the second-order term vanishes Nor
sults foru*F* at the three-loop level differ only a little from = —5+ /129. This is not anymore a problem since there is a
their two-loop counterpart. This was also see in Fig. 9 andhree-loop order term preventing afi/behavior, see the
Fig. 8 foru*F*% . ForN=1, we can also infer from the table comparison between Eq&3) and (25). The coefficient of
that the results coming from variational perturbation theorythe three-loop order can itself vanish. For E34), this

and from a Borel resummatiofdl] are not in excellent happens foN= N~10.5324. Since Eq$24) and(25) imply
agreement not even within the error-bars of the latterg pehavior like 1f, it is legitimate to wonder about poles.
u*F*(N=1)=0.3687+0.0040. The agreement is, however, The answer is simple: if the coefficient of the three-loop term
recovered for the valueN=2,3. vanishes, then the problem is formally equivalent to evaluat-
Foru*F? , there is no available comparison between ouring the strong-coupling limit of a two-loop series. The coef-
work and others. The authors p41] could not perform a ficient of the linear and quadratic terms are, however, differ-
reliable Borel resummation, presumably because of the lacknt from the two-loop result since the linear term has a factor
of an alternating series. A comparison is, however, possiblg(p+1)/2 instead ofp and the quadratic one a coefficient
for the differenceu* (F* —F%*). We have seen in the previ- (2p—1) instead of a factor 1. We conclude that when the
ous section that the two-loop evaluation of this difference inthree-loop term vanishes, the strong- coupllng limit should be
the strong-coupling limit did not work well in our case be- well behaved, giving a smooth curve arouldThis discus-
cause the second-order term in the bare expansion chang§ign shows that the functionin Eq. (24) is not always zero
sign for some value ofN. Let us see how the situation here because contains the coefficient, of the two-loop
changes at the three-loop level, which has the expafis@n term, and its zero governs the behavior of the solut@#).
Egs.(130 and(131)] We note here the important following point: the positive
square root+r was chosen in Eq24) in order to match a

1 _ - C : .
U(F_—F,)==+(N—4)ug—2(N?+ 10N— 104 ug vanishingf;. We explained, and this was used when evalu-
2 ating 7, that the negative root might play a role as well. For
+[F® - F®) 1 24(7N2— 14N —440) U3 7 to three-loop order, we had a negativelet us see what
happens forf,=0. The expansion to be opt|m|zed fissfg
(134 +f1uB+f3uB, such that we have to solvé1+3f (03)?
0.011
0.0105 2 4 6 8 1o
0.01 -0.05
0.0095 -0.1
0.009 u* fy -0.15 utFy
0.0085 -0.2
-0.25
2 1 6 8 oV
-0.3 =

FIG. 7. Comparison between the two-logghort-dashedand
three-loop(solid) amplitude function of the order parameter. The  FIG. 8. Comparison between the strong-coupling limit of the
resummed valuet2] obtained using a Borel resummation are in- two-loop (shot-dashedand three-loop amplitude functiofsolid)
dicated by the dots for values bf available. u*Fy .

056113-19



H. KLEINERT AND B. VAN DEN BOSSCHE PHYSICAL REVIEW BE63 056113
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0.42 0
0.41
0.

0.39 0.
0.38

» 0.2
0.37f o

N

0.36 5 10 15 20 25 30

FIG. 9. Comparison between the strong-coupling limit of the  FIG. 10. Comparison between the strong-coupling limit of the
two-loop (shot-dashedand three-loop amplitude functiofsolid)  two-loop (shot-dashedand three-loop amplitude functiogsolid)
u*F* . The resummed valudg?2] obtained using a Borel resum- U*AF%=u*F* —u*F* . The three-looplong-dasheyl evaluation
mation are indicated by the dots for valueshohvailable. of u*(Ft—Fj_) IS in better agreement with the resummed values

. (dot9 obtained in[42] using a five-loop N=1) or three-loop K
=0. For the critical exponents, the signsfgfandf; are the ~ #0) Borel resummation.
same because the series are alternating. For this reason, this
equation has no real solution, and we must solve the turningor which f, changes sign. The zero &§ lies within the
point equation 830% =0, which is05=0, leading to the same region. Finally, the last region is within the rarige
optimized resultf* =f,. For the amplitude functions, we ]N;,N,], for which we use Eq(24), but with the negative
have already seen that the alternating property is not necessotr=—|r|. More precisely,
sarily true, so that the soluticﬁrﬁz —f,/(3f53) is real. At the

* * _ %
point wheref, vanishes, we can see that the optimal value is ut(FZ—F%)

5 o 1 2(N—4)(N?+10N—104p(p+1)(2p—1)
_ 1 S
=3V =37, (139 2 [FO-F®+247N2- 14N - 440)]

the positive or negative sign being chosen to get a continuity x| 1— Er)
of the solution around,. 3

For the difference functiom(F_—F ), it is possible to 2 3 3
follow exactly the strong-coupling limit as a function bif _ 2[2(N"+10N—104]°(2p—1) (1-1)
Depending onN, there are four different solutions: below 2N F® —F®) 4+ 24(7TN2—- 14N - 440)]? '
N;~2.485 27 and abovbl;~16.6066, the argument of the (136

square root of is negative, and one uses H@5). For N

€[N;,Ng[, one uses Eq(24) with the positive root (  with r=0 for N=N; andN=Nj, andr the negative or posi-
=|r|), whereN;=—5+129~6.357 82 is the value o tive square root of

L3 (N=4)[F®—F®)+247N?—14N—440)]p(p+1)
2[2(N?+10N—1041%(2p—1)?

r=

(137

for Ne]N1,N,] or Ne[Ny,Ng[, respectively. In Fig. 10, we show the strong-coupling limit af (F*
Thus, the pole inN of the two-loop approximation to —F?%). For comparison, we also give the direct difference
u*(F* —F*) was only an artifact of the low order. At the U*AF% betweenu*F* andu*F? , as obtained from Egs.
three-loop level, the singularity is avoided by the interplay(133 and (132, as well as its two-loop counterpa(t21).
between the different possible solutions of Ead) arising  1he range foN has been increased to 30 in order to inves-
from the different branches of r=0,%|r|, with |r| to be tigate the regions delimited by;, N,, andNj.
identified with the functiorr defined below Eq(24). This For the direct difference, the changes brought about by
possibility was not exploited in previous workg,5] because the three-loop is very small, as before in Figs. 8 and 9. The
of the alternating signs for the critical exponeri&ee, how- difference betweew* (F* —F?%) andu* AF* is, however,
ever, » that required = — 1 for the strong-coupling limit of somewhat larger. To facilitate the comparison, the following
Eq. (74).] should be of help:
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N 0 1 2 3 4
u* AF* (2 loops 0.372596  0.433608  0.485714  0.530258  0.568519
u* AF* (3 loop9 0.374166  0.432926  0.484899  0.530224  0.569615
u*(F* —F*) (3loopy  0.374166  0.421864  0.461436  0.489995  1/2
u* (F* —F*) (Ref.[41]) 0.4179 0.461 0.498

The simple value 1/2 for the cadeé=4 comes from Eqgs.
(136) and(137): for N=4, r is vanishing, meaning the third
term of Eq.(136) does not contribute. Since the second term
is also proportional tdN—4, only the zero-loop order sur-

vives for the Higgs case. Our results fof (F* —F%) arein  The series is alternating and behaves as for the critical expo-
good agreement with the Borel results of Refl]. Thisis  nents. No subtleties arise here as in the casé pofnd
probably not a coincidence since we now resum the Samgs (F* —F*). In particular, the argument of the square root
function as they did. We note, however, that for the Isingqs  in Eq. (24) is negative for allN and we have to work

model (N=1), we are not within the error bars B41]. We ity Eq. (25). Using Eq.(25), the strong-coupling limit is
have already noted this for the strong-coupling limit of

u*F*.

Before closing the investigation of F - —F ), we recall
the case ofy, whose direct two-loop strong-coupling limit
gave Eq.(111), exhibiting a pole. We know the strong-
coupling limit should not have been far frohj(T/8, see the

discussion leading to Eq113). We have shown in this sec-
tion how a pole inu* (F* —F%) at the two-loop level might
disappear at the three-loop one. This is probably the case fdrhis result is plotted in Fig. 11 together with the two-loop
fy . It would be very useful to get its three-loop order. resultu*N/2, see Eq(122. We also indicate the approxi-

We can now turn to the strong-coupling limit of the renor- mate resultu* B* =u* N/2 with u* from the three-loop ex-
malization group constant of the vacuusfu). Its three-loop  pansion(84). There is no visible difference between the latter
value has been given in E¢LOD). and Eq.(139.

Upon inserting the relation between the renormalized and To facilitate the comparison between the different ap-
the bare coupling constaft4), we obtain proximations, we recapitulate the numerical results:

uB(u)= EU —2N(N+8)uz+N(8N2+ 16N+ 686)US
2 B B B
(139

- _N(N+8)p(p+1)(2p—1)
6(8N?+ 167N+ 686)

16N(N+8)3(2p—1)3
27(8N2+ 16N+ 686)2

(139

N 0 1 2 3 4
u*B* (2 loop9 0 0.0226337 0.04 0.0535312 0.0642361
u*B* (3 loop9 0 0.0221074 0.0391089 0.0523643 0.0628447
u*B* = uz*3)N/2 0 0.0219975 0.0388885 0.0520441 0.0624386
u*B* (Ref.[41)) 0 0.020297 0.0363919 0.049312
For the comparison withi41], we have multiplied their
five-loop results foiB* with their five-loopu*. These five-
0.1 g loop results are within 7% from our three-loop strong-
“ coupling calculation. This confirms th&* ~N/2 to all or-
0.08
0.8
0.06 . 4
P 0.75
0.04
0.7
0.02 0.65
N
2 4 6 8 10
FIG. 11. Comparison between the strong-coupling limit of the ¢ .55

two-loop (short-dashed and three-loop(solid) renormalization

group constant of the vacuuni*B*. For completeness, we also FIG. 12. Comparison between the strong-coupling limit of the
give the approximate three-looffong-dashed result uz‘s)NIZ. A two-loop (short-dashedand three-loogsolid) polynomial P% . The
five-loop calculation[41] using Borel resummation is included values[42] obtained using a five-loop Borel resummation are indi-
(dotg for values ofN available. cated by the dots for values df available.
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ders. We shall, however, see in the next section that this 7%malized P, was given in Eq.(F4) and resummed to two
difference leads to a non-negligible difference in the univerdoops in Eq.(123). The series in the bare coupling constant is
sal combinatiorRc . alternating, and behaves as for the critical exponents. The

The next quantity we shall resum to three loops is thestrong-coupling limit of P%¥ to three loops is then
polynomialP, . The three-loop bare expansion of the renor-given by

L9 (N+2)(2N+17)p(p+1)(2p—1)
2 [ —3(36N%+ 837N +3920 + 24(N+ 8) 72+ 4(43N+182)In(3/4) + 288 N+ 8) Li,(— 1/3)]
(N+2)(2N+17)3(2p—1)3
[ —3(36N2+ 83N +3920 + 24(N + 8) 2+ 4(43N + 182)In(3/4) + 288 N+ 8) Li »( — 1/3)]?’

P*=1

+54

(140

with p from Eq. (64).
In Fig. 12, we compare Eq140 with the two-loop result from Eq123). Almost no difference is found between our two-
and three-loop expansions.

For a better comparison, we quote the numerical valuedlfe0,1,2,3,4:

N 0 1 2 3 4
P* (2 loops 0.805147 0.74269 0.695238 0.658642 0.63
P* (3 loops 0.807683 0.745874 0.698901 0.662717 0.63447
P* (Ref.[41)) 0.7568 0.7091 0.6709

The two- and three-loop results agree within 1%. The results agree fairly well with the five-loop Borel resummation
performed in[41]. We shall, however, see later that amplitude ratios depend crucially on the exact vatje &or this
reason, our three-loop calculation is probably not precise enough. We shall present in the last section a numerical five-loop
strong-coupling evaluation d®*% to more firmly settle this statement.

To conclude this section, we discuss the amplitude of the susceptibilities above andTheiovwhree loops. We already
know from the previous section that the two-loop amplitude ablvis identical to the order zercﬁ;*”: 1, see Eq(108). As

for the case otif,, we then expect a very small deviation from the zero-order value as well as a very dihdefiendence.

The series to evaluate in the strong-coupling limit is given in @&$). It is alternating and behaves like the series of the
critical exponents. Moreover, with a vanishing linear term, but with a negative coefficient of the quadratic term, the solution
of the optimalization problem is at variance with the case of the exponentthe amplitudée 4 if, as for these quantities, we
admit that the solution is a maximum. From E27), we determine that the optimal value(i§ =0, so that

! (141)

remains true at the three-loop level: The amplitude of the susceptibility abhoaethe three-loop level does not dependvon

This is in contrast td55], where aN-dependent fit, using Borel resummation, has been performed. Because our resummed
value up to three loops 'rfsM: 1, it is tempting to conjecture that this is true for all orders. However, contrary to the case of

n andf,, we have here no argument to tell that the maximum has to be chosen instead of the minimum. Only when going to
higher orders, then having more expansion coefficients, can we decide which solution is the right one. For this reason, we also
mention below the other solution, which differs from unity for at most 2.5%:

48668N+2)3(2p—1)3
fr =1- . : (142
- [27(N+2)(N+8)]%[ — 113+ 1272+ 128 In(3/4) + 144Li,( — 1/3)]?

The comparison between the two curves is given in Fig. 13, as well as a comparison with the fit

fr, =1—92AN+2)u’(1+b, u)/27 (143

taken from Table 1 of55], with b, =9.68(N=1),11.3 (N=2), and 12.9 KN=3), combined with the five-loop* of Ref.
[41]. More precisely, we have
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N 0 1 2 3 4
f;*(+ (2 loops 1 1 1 1 1
f;‘(+ (3 loops from (141) 1 1 1 1 1
f;+ (3 loops from (142 0.979543 0.976298 0.975082 0.974977 0.975472
f;+ (Refs.[41,55) 0.976791 0.9748331 0.9740978

The fact that our three-loop calculatidh4?) agrees very well with Ref§41,55 might be an indication that Eq142)
should be preferable to E¢L41). However, from a variational perturbation theory point of view, nothing can be said. Only the
determination of the next order might resolve the ambiguity.

Finally, we determine the strong-coupling limit of the amplitude of the susceptibility b&|ofor N=1. We have checked
that the parametarin Eq. (24) is zero, i.e., we have to work with the turning-point equatii@s). Applying it to Eq.(D4), we
have

1. 435%(p+1)(2p—1)
Y= 7 3[19904- 11 664, + 372+ 10 480 Ir(4/3) + 36Liy( — 1/3)]

164852924 41@p—1)2
1968319 904 11 664, + 372+ 10 480 I(4/3) + 36Li,(— 1/3)]%

(144

with p from Eq. (64). Numerically, this is evaluated a ~2.09387, to be compared with the two-loop res(ii24)
211/103<2.048 544. They agree within 3%.

For the ratio(105), the calculation off, /f,, is needed. Its strong-coupling limit can be determined using the individual
strong-coupling limit of the numerator and the denominator. In that case, the ambigufty oat the three-loop level is

relevant. According to the choide;+= 1 from Eq.(141) or f;+~0.976 298 from Eq(142 with N=1, we have

f*
f% =2.09387, (145

X+

f*

X—
——=2.1447, (146)
f*

X+

respectively.
The strong-coupling limit of the ratié, /f)(+ can also be computed from its perturbative expansion. It has been derived
in Appendix D, see Eq(D6). The strong-coupling limit reads

f

BV 1420(p+1)(2p—1)
3[19 18411 664, + 9972+ 9456 In(4/3) + 1188Liy( — 1/3)]

X+

5726576 0002p—1)2
72919184 11 664, + 9972+ 9456 In(4/3) + 1188Li,(— 1/3)]%

(147

Its numerical value is 2.112 27, to be compared with thecompare the four-loop order with the two-loop order, and the
two-loop result (125 751/355-2.11549. The three-loop five-loop order with the three-loop order.

level is in very good agreement with the two-loop result,
within less than 0.2%. However, this by no means signify
that the asymptotic limit has been reached, and the ratios
(145 or (146) might be closer to the true ratio than Eq. We have now everything in hand in order to compute the
(147). This is due to the fact that the even and odd orders areatio of the heat capacith™/A~, the universal combination
on different converging lines because deder) terms come R, and the ratio of the susceptibilitids, /T"_ . This sec-
from an extremum(turning-poin} condition or vice versa. tion is restricted to a full two- and three-loop calculation. In
To see the speed of convergence, it would be necessary twder to improve the ratios, we shall break our rule of being

E. Amplitude ratios from two- and three-loop expansions
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1.01 u*F*% . We have checked that the effect on the ratio/A _
is negligible. The exponent entering it is calculated from
T the two- or three-loop result far given in Eq.(52) and Eq.
(81), respectively, using the hyperscaling relation=2
* - D V.
0.93 F Combining the different results derived previously, we
have
0. 98\.\’__’/ N 0 1 2 3 4
. A, /A_ (2loopy 0 0.489106 0.843065 1.12691 1.37015
5 n 5 5 o N A, /A_ (3 loopy 0 0.491088 0.862439 1.16719 1.43243

FIG. 13. Comparison between the two-loop strong-coupling Regarding the fact that the critical exponents far away
limit (short-dashexof the amplitudef} —of the susceptibility above from its asymptotic limit(it is still positive forN=2, while
T. and the second possible soluti¢h42) at the three-loop level the shuttle experimen28] shows clearly a negative valye
(solid). The valueg55] obtained using a five-loop Borel resumma- the results of this table are promising: Rdr=2, we obtain
tion (dot9 are given for values ofl available. A, /A_~0.862439 at the three-loop level, while the shuttle
experiment[28] gives A, /A_~1.0442, see Eq(l). We

self-consistent in the next section and use there the maxghall see in the next section that working with asymptotic

mum information available. critical exponents leads to a better agreement with experi-
We start with the heat capacify*/A~. Since we have a Mments. _ o _
preference for Eq(100) over Eq.(118), we shall work with The next ratio we examine is E¢104), the universal
the separate strong-coupling limit evaluationdfF* and ~ combinationRc . The results are best displayed as
N 0 1 2 3 4
Rc (2 loops 0 0.062474 0.124819 0.184355 0.239967
Rc (3 Ioops,f;+=1) 0 0.05944 0.121628 0.182413 0.239691

Rc 3 Ioops,f;‘(+ from (142) 0 0.060883 0.124736 0.187094 0.245718

We see an overall agreement between the two- and thre&his value is still far from the expected ratio 4.7. However,
loop results. We have also checked that the rB{iocalcu-  the ratio depends sensibly on the value of the critical expo-
lated with the formulg103) used in[42] is within less than  nentw. For example, using=0.63, we increase E¢149) to
1%. Moreover, our results are in agreement with the value§', /I'_=4.002. The sensibility is also seen when calculat-
Rc(N=2)=0.123 andR:(N=3)=0.189 given in Ref[42].  ing the three-loop value of the ratio:

Since we expect that using the true critical exponent will

lead to a better ratié\, /A_, it is important to see howR; T

evolves. Will the agreement wif2] be lost? This issue is —* 3887 85, (150
investigated in the next section. I

To end this section, we study the ratio of the susceptibili-
tiesI", /T"_ for the Ising model, see E¢1095. where the ratio {, /f, )* has been obtained frof147.

The two-loop result for the amplitude rati@05) is, with

v=56/90 from Eq.(52), with P} =127/171 from Eq(123
and withf* =1: F. Amplitude ratios using maximum information
X+ :

Up to now, we have followed the strategy to make a fully
consistent two- and three-loop calculation. The comparison
between the two- and three-loop amplitude functions has
made us believe that the resummed values are close to the
(148  extrapolated limitL —c, although one has to take care that
odd and even approximations are on different converging
lines. For the critical exponents, it is primordial going to the
asymptotic limit. For example, we havg N=2) still posi-
tive at the three-loop level, while the shuttle experiment, see
second reference df28] and Eg. (1), shows a value of
a(N=2)=-0.01056.

I_ 103

r. 211 4vP% \* 211/14224 545
8861

———— | =—|———| ~3.69171
3—4vP* 103

This is still far from the value~4.7 quoted in the literature
[18,56. A small improvement is obtained using the direct
strong-coupling evaluation cff)(f/f)(+ of Eq. (125):

x \2v 56/45 In this section, we shall relax our constrain of working
F_+: 751 ﬂ :E(%A) ~3.812 36. only with two- and three-loop quantities and will take the
I'_ 355\ 3—4,pP* 355 8861 maximum available information, i.e., our three-loop result

(149  for the amplitudes and extrapolated, or experimental, value
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for the critical exponents. We shall also see the effect offable 5 of[18], values that are both experimental and theo-

using uB to five loops. retical. In Ref.[41], the authors obtained 1.056 fbi=2.
Except fora(N=2) that we took from the shuttle experi- Their Table 4 makes a comparison between their result and

ment[28], the exponents are taken from tBe=3 tables of other works and experiments, fok=1,2,3. We see that the

[18], i.e., we are working with, foN=0,1,2,3,4: agreement is good. In our table, we have listed only the
values calculated in the worf41] since the model is the
v=0.5882 0.6304 0.6703 0.7073 0.741 same.
For the universal combinatioR:, we obtain, using the
a=0.235 0.109 —0.01056 —0.122 —0.223. five-loop critical exponent$151) and the three-loop ampli-

(151  tudes of Sec. IVD

Combining the three-loop strong-coupling limit of the ampli- Rc=0, 0.0616257, 0.130341, 0.201404, 0.270882

tudes performed in Sec. IV D with these exponents, we ob- (152
tain, forA_ /A_, for N=0,1,2,3,4.
Here also, we have checked that the main effect is due to
N 0 1 2 3 4 choosing the correcte. Working with v at the three-loop
level only modifies the result slightly. While working with
ALlA- 0 0.543406 1.04516 1.54386 2.0444 the true exponents for the ratid, /A_ had considerably
A_/A_ (Ref.[41]) O 0.540 1.056 1.51 improved it, making it coincide with the experimental val-

) ues, we see foR. that the values of the previous section,

We have checked that the increase from the three-looRjith a wronga were in better agreement with the quoted
value (for N=2, this ratio was 0.862439) is mainly due to values in[42]: Rc=0.123,0.189 forN=2,3, respectively.
using the correctr. For example, with the correet but still e have checked that our result fde=2 is not changed if
using the three-loop of Eq. (81), we would have obtained, e take the values af and v taken in[42]. Also, the result
for N=2, a ratio 1.047 11. It also does not depend too SeNgoes not depend Sensib|y of F'fr , a|th0ugh our value dif-
sitively on using the five-loop strong-coupling limit of B*  fers from theirs. We have traced back the difference between
and P , neither on usingi* (F* —F%) instead of the sepa- our result and41] to uB at the critical point; limiting our-
rate calculation o* F* andu*F? . For example, playing selves toN=2, we haveu* B*~0.0391089 while[41]
with all these quantities, the ratio, fdN=2, could be gives a valueu* B*~0.036 391 9. This difference is all that
changed fromA,/A_=1.04516 to, at mostA, /A_ is needed to explain the difference between our result and the
=1.049, depending on which quantities are taken to fiveresult of Ref[42], apart from a very small difference coming
loops. A complete numerical study of this ratio, using varia-also from our use of Eq(104) instead of Eq.(103. Since
tional perturbation theory up to five loops, will be presentedu* B* has been obtained i#1] using a five-loop Borel re-
elsewherd58]. summation, it is tempting to believe it is more accurate. For

For N=2, our result 1.045 16 coincides remarkably well this reason, we have also determined numerically the five-
with the shuttle experiment, see second referen¢2&if For  loop strong-coupling limit ofuB. We shall show a detailed
N=1, we have 0.543 406, which agrees reasonably well withumerical resummation if68], showing here only the main
Ref. [25] (A, /A_~0.541) and with the values quoted in steps. Starting from the five-loop expansieii, 43

N N(N+2) , N(N+2)(N+8)[—25+12{(3)]
u°+

=— 4
uB(u) 2u+ 78 648 u"™+N(N+2)

(Lo 31ON2+ 13 968N+ 64864+ 16(3N?— 382N — 1700 ¢(3) + 96(4N2+ 39N +146){(4) — 1024 5N+22) £(5)]
u
41472 ’

(153

and using the algorithm given by E(L7), the corresponding strong-coupling limit is

N 0 1 2 3 4
u*B* (5 loops 0 0.0209552 0.0372717 0.0502225 0.0605918
u*B* (Ref.[41)]) 0 0.020297 0.0363919 0.049312

Our five-loop result is now much nearer to the Borel re-given in[58], which also contains the effect of variations of
summed values of41] than our three-loop order of Sec. P* , which is the second source, aftef B*, of error for
IV D. For this reason, we believe our five-loop result is nearR¢ .

the infinite-loop limit extrapolation. More details will be Finally, our best values for the ratR: are collected
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N 0 1 2 3 4

Rc 0 0.05803 0.12428 0.19402 0.26285
Rc (Ref.[41]) O 0.123 0.189

To our knowledge no experimental value of this ratio is
known forN=2. The casé\= 3 is presented in Table 7.6 of
Ref.[56]. For N=1, the value of the ratio has only slightly
changed compared to the results based on threedoapd
v. This is due to the fact that, fdd=1, « is positive and its
effect onR is less sensitive. In the woifli 8], the theoreti-
cal and experimental values B are also given foN=1.
The theoretical values seem to prefer a value around 0.0
while the experimental values are around 0.050. From Tabl

7.1 of [56] we, however, see that values close to 0.06 mighb

as well be obtained. A resultRc~0.0594) close to this
latter value was also obtained theoretically #5].
Better experiments or other theoretical studies are need

in order to see if our predictions are correct or have to be .When using variational perturbation theory

ruled out.

Finally, we conclude this section with the ratio of the
susceptibilities for the Ising model. Using the critical expo-
nentv to five loops Eq(151), we obtain

I, /T _=4.06419, (154)

where we took the ratiofg(flfh)* from Eq. (147). We
might have slightly increaseld, /T"_ using the value 2.1447
of Eq. (146). However, we would still be far from the value
4.77 of[18], the value confirmed in the woifR5]. The only
possible quantity we may still vary in the ratid05) is P .
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merical study of the known five-loop amplitudes will be
done in[58], which will contain refined results compared to
Sec. IVF.

One interesting observation of our work is that we can
evaluate series that have caused problems in previous Borel
resummations when the expansion coefficients in terms of
the renormalized coupling constant are not alternating to low
orders. For these functions, the strong-coupling theory turned
out to work well.

Having obtained analytical expressions M we have
shown that the coefficient of the series in the bare coupling

nstant may vanish and change sign. At the two-loop level,

5tcf'?is lead to diverging results near certain valueNofWe

fiave seen that the problem disappears at the three-loop level,
ecause of the interplay of the different coefficients of the
series. We could show precisely how it works because all our
results were analytical and not restricted to integer values of

nothing is
known of the nature of the optimal variational parameter,
which can be a minimum, a maximum, or a turning point.
The analysis performed here should help to identify the cor-
rect (numerical solution at higher-loop order. See for ex-

ample the amplitudde;+ , for which it is not yet clear which

of the solutiong(141) or (142 has to be chosen.
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APPENDIX A: EXPONENT w FROM STRONG-COUPLING
THEORY

The powerp/q of the leading power behaviar?® of a

functionW, whose perturbative expansion has been given in
Eqg. (20) can be obtained taking the logarithmic derivative,
giving Eq. (21). A subtlety arises for functions going to a
constant in the strong-coupling limit. For such functiops,
vanishes and the correspondiffgin Eq. (17) vanishes. Care
has to be taken: the limit* — 0 is different from imposing

In this paper, we have shown that variational strong-f*=0. |n the former case, we can identify (or w) by

coupling theory[2,5] can be applied not only to critical ex-

matching the series to achie¥&=0. Working directly with

ponents, but also to various amplitude ratios. We have foy series that haé* =0 implies a leading behavigp’/q=
cused on two- and three-loop results were analytical results. ,,/¢. The algorithm(17) serves then to identify the coef-

for the amplitude functions are knowd1,42,44 for all N
both above and beloW,. Our results are analytical expres-

ficientc, of the rhs of Eq(18). As an example of how to use
the series, let us derive the relatifin5,13

sions, except in the last section where we used more infor-

mation to findA, /A_,Rc andI', /T"_. The results are

quite sensitive to the precise value of the critical exponents.

In addition, a five-loop evaluation of the renormalization
constantB* was necessary. The ratiy was so sensitive to

w

€

dinw,

. Al
dinug (AL)

it that a three-loop calculation was not sufficient. The sameThe left-hand side is of the type of E(L8), and the algo-

remark holds foP?% , which affects mainiy", /T _. A nu-

rithm (17) can be applied. FormulgAl) follows directly
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from Eq.(18). Alternative derivation starts from EQ1): If

PHYSICAL REVIEW E 63 056113

wherer g = m’§+ 12ugM é is the longitudinal bare mass, the

p/q is vanishing, this means that its series has a leadingransverse one,r=m’3+4ugM3 being included in the pa-

exponentp’/q=— w/e, which we derive in the following
manner. Start from formulé&21) with its exponenip’/q that
we know from the general behavi6t8) with f*=p/q=0,
ie.,

P

g

o dIn(p/q)

— A2
dinug (A2)

€

wherep/q is not yet taken at its asymptotic zero value, but is

given as the right-hand-side of E@®1). It then follows

us

Gt _P
BWI,_

wow
W W

w 1 _ .
——=1+4+u —
€ B

(A3)

L

Taking the limitug— <, the termp/q vanishes by hypoth-
esis, and we end up once more with form(#el).

Although the algorithm{17) cannot be applied directly for
the right-hand side of Eq21) if p/q is vanishing exactly but
only in the limitp/q— 0, we can, nevertheless, use a trick to
circumvent this problem: If the series f@V, has a vanishing
leading powerp/q, then W, /ug has a powemp’'/q=—1.
This allows us to deduce
W!

Lo Pg
W, q

~ dIn(W, /Up)

dinug

p’ _
q B (A4)
This shows that the right-hand-side of Eg1) can be used
to reach the limit 0. Thenp can be extracted either from Eq.

(21) or from Eq.(Al). It is also clear from the expression

(A3) that the right-hand-side has to be resummed blockwise:

we have to use the intermediate requltj=0 before tempt-

ing to resum. Using a full resummation of the right-hand-
side of the latter equation would lead to badly resummed

results (although the underlying expansion would be the
same: It is necessary to usg/q=0 in Eq.(A3), and not its
analytical form that would have been mixed up with the
power series ofV/W| .

APPENDIX B: FREE ENERGY TO THREE LOOPS

From the model Hamiltonia¥), the analytical calcula-
tion of the Gibbs free energ}QB(m’é3 ,Ug,Mg) near the co-
existence curve beloW, and for M3=(¢3)=0 aboveT,
has been obtained at the two-loop ordef4®] and at the
three-loop order if41], thus extending th&l=1 calculation
of Rajantie[35]. We write directly the three-loop result:

1 3 b-1 1
FB:Em,éM§+uBMé+Z Z Z
b=1 1=0 k=0

X (=1 27 Fy(w,N)

K
Moo

(24ug)?
(B1)

loL

_ |
(240g)? "

X (24ug)®~'(M3)!

1(4—b—2|)/2

rameter w=rqy/ro . The nonanalyticity in the coupling
constant is seen in the last term.

The functiong=,, can be found ih41,46. Since we need
them later on in this Appendix, we shall write the nonzero
components:

1
Floo:—m[lJr(N—l)V_VB/z], (B2)
Fao= S[3+2(N- 1w+ (N*~1)w], (B3)
384
1 | 1+2w*?
FZlO_—288772(N_ Din—7—, (B4)
Fou= ! (N+2) (B5)
211 288772 .

F300=;(15+24In§—(N_1)|W 124 oN—6
18 43273

2+ 2wt?
+81In

1
+v_vi’2[N2—6N—9+4(N+1)In 5

w2

2+2
+81In

3 (B6)

+W(N—1)]>,

2304”3{3+(N— 1[1+(N+2)w 2]},

Fao= (B7)

310 (97%—18+108Li)(—3)— (N—1){4w 12

276487
+4N+2—(N+2)72—12Liy(%)—32In2—6(In 3)?
+wWYq 10N+ 32— 16(2N+3)In2+48In 3
—8(N+1)Inw]+ W(84N—100-1281n2)}), (B8)

F320= [432 In§ —324Li,(— 3)—43%,— 272

165 88872

3N+14
—(N— 1)(16W1’2+ ——— 7?+18(In3)?

+36Liy(3)+16Ccy+4Lin(—2)—2Liy(—3)
+(6In3—IN2—3)In2]— 28+ 16WY7—N+(N
+1)In(16w)+2 In2—6 In 3]+ 4w{4c,— 12N— 22
¥)In2+ 12 2Li,(—2)—Li,

+72+6(6In3— In2—18

<—%>]})},

(B9)
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where, in the coefficients 310 and F 3,50 below T, terms of

orderO(w*? w*?Inw) have been neglectdthe coefficients

PHYSICAL REVIEW E63 056113

amplitude functionsz‘)(+ andf, which, to our knowledge,
have not been determined analytically within this model.

are calculated in the vicinity of the coexistence curve where

an expansion with respect ®is justified. The constants;
andc, have been defined in the main text, see E§6) and
(97).

Inverting the equation of state

d

hB:mFB

(B10)

gives, in the limithg— 0, and to this order, the square of the
magnetization:

1 3 u
_ 12y 4 . 12y1/2,4 B
_UB( 2m's) _477( 2m’s) 82

8
—2m'3
A
(24ug)?

X ¢ —27360N—5904-6480c; +24QN—1)c,

M3 10— N+4(N

up(—2m'g) "

192072

—1)INn3—2(N+2)In

—(75N?—5N+875 72— 126 (N—1)Li,(%)
+9Liy(—3)]+960N—1)[2Liy(—2)—Liy(—3)]
—63QN—1)(In3)2—48In2[10(N—1)In 2
—60(N—1)In3+11IN—561]+ 240 12N—57)

r2

B

2m
4ug)?|

The logarithmic terms irug are nonanalyticities that can
be removed using the length instead ofm’§<0, sed 38].
Up to the three-loop order, the relation betweén and
m’'3<0 is

XIn3—144QN+2)In 2

(B11)

+2 N+2

1385
108

_om2= :2|1+N Ugé — ——(Ugé )]

2
N+2

4 In(24ugé_
+41In(24ugé )]+108n'3

(Usf—)s

X | 3(438N+4349 + 576 N+8)Liy( — 3

3
+ 48N+ 8) 72+ 8(43N + 182In7 ] . (B12

Using Eg.(B12) in Eq. (B11) one obtains an analytic
function ofug, from which one extract the amplitude, of
Egs. (85 and(93), after proper normalization with the help
of Z,. This has been done 2,46 and will not be re-

APPENDIX C: THREE-LOOP AMPLITUDE FUNCTION
OF THE ISOTROPIC SUSCEPTIBILITY
ABOVE T¢

By definition, the amplitude of the susceptibility abovg
is obtained from the susceptibility at zero momentﬂf}l
=& x7 s, where the inverse susceptibility is given by the
two-point function'®) at zero momentum. The correlation
length above the critical temperatuge is defined as in
Refs.[41,42,46:

& =X+ 8 ax () 907 g2—o. (CY
Combining with the definition ofB+ , we have
ax:s ar@
aq C|2=O aq q2=o

The derivative of"{?) with respect tay? is needed. This is in
contrast to Refd41,42,44 where only the combinatio(C1)
was needed. For this reason, the intermediate result leading
to Eq. (C2) was not published. Being needed to determine
the ratioR¢ in Eq. (104) and the ratio of the susceptibilities
(105, we derive it in the following. The two-point function
can be written ad'@=r,+0%—3g(0,ro,Ug), Where the
self-energy has the expansion Xg(q,rg,Ug)

=3 _(—ug)"=(q,ro). The two-loop results have first
been given in Appendix A of Ref46], with the result, up to
orderg?:

T®= 24 1o~ 4(N+2) ApUgr S2+ 8(N+2)2A% U3

2
D-3

27 g?

27 1y

(N+2)

The pole atD =3 can be eliminated by subtraction, leading
to the massem3 andm’3. This is, however, of no concern
here since we are interested in taking the derivative with
respect tog?:

oary
g

N+2u_§

2772 To

(C4

92=0

For the three-loop expansion, one must calculate the dia-
grams in Appendix B of42]. Again, we concentrate on the
derivative of the susceptibility at zero momentum, focusing
on the diagrammatic EqB5) of [42]. The corresponding
vacuum diagrams have been given by Rajantig8hj, see in
particular its Eqs(15) and (25) and, taking the appropriate

peated here. The equations we have quoted here are meaterivative with respect to the mass, we obtain the contribu-
tioned because we shall need them below for obtaining th&éon of the three-loop diagrams:
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933 N+2)2 (N+2)(N+8 relation (13) betweenug andug=ugé, /(47), we arrive at
‘32 = ( 3) — ( A 3 )[—8+ 372 the normalized amplitude function of the susceptibility above
99 42— 27 S T., expressed in terms of the reduced bare coupling constant
Ug:
+32In%+36Li2(—%)]] ro¥2. (C5) .
fr,=1—2(N+2)uzg— 7 (N+2)(N+8)

This has to be combined with EGC4) to yield the expansion X[ — 113+ 1272+ 128 In + 144Liy(— 1) 0.

are B +N+2 u§+ (N+2)2  (N+2)(N+8) (C9)
99> =0 272 To 27 54773
The corresponding expansion in terms of the renormalized
. ug coupling constant gives
X[—8+3m*+32In3+36Lix(—3)]{ ;-
I'o
cH fr,=1-F(N+2)u*— Z(N+2)(N+8)

Since there is no linear termg, the amplitude of the X[ =21+ 127+ 128 Inf + 144Lip(— 3)Ju®,

susceptibility aboved . to three loops requires only the one- (C10

loop order of the correlation-lengté, , i.e., the one-loop
order of the susceptibility. To three loops, the following ex-

pression where we used Eq14). Contrary to Eq(C9) which is well

behaved regarding strong-coupling theory, E&10), which

. N+2 N+2 coincides with the numerical coefficient§’ of Table 4 of
mg=§&,% 1+ Ugéy + — (Ugéy)? [55], is problematic when considering the Borel resumma-
m tion scheme: All its coefficients are negative. For this reason,

> we have not been able to reproduce the Borel resummation

(ugé,)® made in Ref[55]. We shall, however, make, in the main
3 text, a comparison between the strong-coupling limit of Eq.
(C9) and the resummation performed|[iB5].

N+

1
—+2In(24ugé.)

X127

J’_

X[3(3N+22) — 144 N+8)Liy(— 3

_ 2
12AN+8)m APPENDIX D: THREE-LOOP AMPLITUDE FUNCTION
OF THE N=1-SUSCEPTIBILITY BELOW T
_ 3
2(43N+182)ln 4]] €7 In Ref. [40], the amplitude function of the susceptibility

below T, for N=1 has been calculated numerically to five
is found in the literature, sg@?2]. This is the analog of Eq. loops. We have quoted in E¢Q1) the corresponding two-
(B12) aboveT,. At the one-loop level, there is no distinction loop part. This amplitude function enters the ratio of the
betweenr, and m3, and we identify ro=¢,%[1+(N  susceptibilities(105). Sincef, has been obtained to three
+2)ugé, /m]. Together with Eq(C6), we arrive at loops in the previous section, it is also interesting to obtain
f, analytically: The ratioq105 will thus be analytical.

(2) X
B _ 'y In Ref.[42], the free energy'g has been given analyti-
992 220 cally up to three loops. We shall use this knowledge to de-
- terminef, . We have recalled the relevant equations in the
. N+2 , (N+2)(N+8) first part of this Appendix, which have to be evaluated for
=1+ 2772 (Ug€y )™= 5473 N=1 andw=0. The derivative of the free energy with re-
spect to the magnetization leads to the equation of state
X[ —8+372+32In2 +36Liy(— 3)](ugé,)®. (B10) that can be inverted to obtain the magnetizafié].

We have recalled its expression in E§11). The equation

(C8 of state can itself be derived with respect to the magnetiza-
tion, defining the inverse susceptibility beloil: X:,ls
of Table 2 in[55]. = ahB/aM.B. -Only at this stage is the e>.<ternal fidid taken

Having calculated the bare amplitude functibi‘n , we to be vam_shmg. The length_ [42], which we rgc_alled n

. _ + " Eq.(B12), is then used to remove the nonanalyticity coming

can now turn to the normalized Ol‘i§+. Since the latter is from |Ogarithms of the Coup”ng constant. Doing SO, and us-
related to a two-point function, the normalization factor ising the magnetization given by the equation of state, we have
equal to the wave-function renormalization constanf: been able to obtain the inverse bare susceptibility béligw
fy, =Z4f% . with Z,, being supplied by Eq(16). Using the  x“5=¢2%5 , with

This has to be compared with the numerical coefficiefs
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APPENDIX E: AMPLITUDE RATIOS

B _
fx_ +[19472-11664, To get the different amplitude ratios of Sec. IV B, we
. make use of the relations
+372+10480 In% + 36Li,(— )]( Bg ) : (D1) & !
7,2+ ;{—f n’du} (ED)
i ut ) Bu
Numerically, this expansion reads
£ uoy
1+1.43239ugé_)—2.986 16ugé_ )%+ 11.2134ugé )3, X_=Zd,f—exp{ f(l )ﬁ¢du (E2
X— u u
(D2)
PG Ao 4vB* + aF*% E3
This result agrees perfectly with the numerical expansion (g )P 4 - (4vB* +aF%), (E3)

given in the last column of Table 2 [d0]. Using the relation
(14) betweenug andug, we obtain

(E4)

f u
2_ 4 V¢
(o) Zd’gDZeXp[ fu(l Rl

which were derived if37] for Eq. (E1), [40] for Eqgs.(E2)
+104801In3 +36Liy(— %) ]us. (D3)  and(E4), and[38] for Eq. (EJ). All the quantities have been
defined in the main text, except for

B 4244, 2
fy =1+180p~ —Up+[19472- 116641+ 3

The renormalized version of EGD3) is found by multiply-
ing it with Z 4 from Eq. (16): _ ex;{ fu(h) du’ ) 5

4352
fy =1+1805— —5 Ua*[19904-116 64, with u(1)=I. and the flow parameter chosen khsué.

=1, and with&. = £%|t| "
+ 372+ 104 80In§+36Li2(—%)]®. (D4) The amplitude ratio of the heat capacity00) follows
trivially from Eq. (E3), while the amplitude ratio for the
This is the amplitude to be evaluated in the strong-couplingusceptibilities(105 is a direct consequence of Eq&l)
limit and entering the ratig105). and (E2). The only missing information is the rattffrlg_ ,
The bare amplitude€C8) and(D3) might as well be cho- given explicitly in[38] as
sen to enter the amplitude rati®05) since the renormaliza-

tion constan® , drops out, being the same above and below & b+t\”
T.. We have, however, chosen to work with the renormal- o\ T (E6)
ized quantitiegC9) and(D4). & \b

For completeness, we also state the expansioh, ofin

terms of the renormalized coupling constant. Using Et4).
and(D4), we obtain

Because our derivatiofil04) of the universal combination
Rc does not coincide with Eq103) derived by the authors
of [42], we reproduce below our calculation. We need the
amplitude Ay, related to Eq.(E4) by [56] (¢pg)=Mg

1480
f, =1+180+ ——u7+[1072- 116 64, ~Awlt|”. We deduce
. f u
+37%+104801In% +36Li,(—3)Ju®.  (D5) AfA:Z¢O—D2|t|V(D 2)-28 gy f Ye ,
(£2)072 Pl
Taking the inverse of this equation, we recover the coeffi- (E7)

cients of the second column of Table 3 of Ref0]. B _ o
For an application to the evaluation of the amplitude ratiowhere we have specified that the right-hand-side is evaluated
of the susceptibilities, we also give the perturbative expanat the critical point.

sion of the ratiof, /f, atN=1. Combining Eq(C9) with In the same way, the amplitude of the susceptibility is
Eq. (D4), we obtain obtained from Eq(E2) using[56] x . ~T *|t|~”. We deduce
0,2
f B 1420 r+=7 (§+) y—2v _J‘u ﬁ E
%=1+18UB— —5 U3 +[19184-11664, o, TTER ] B o (9
.

+9972+ 9456 Inf +1188Li(— 2)JuS. (D6)  Taking the ratiol /A%, we have directly
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" (€7 o oo 5 N+2 N+2
E:ﬁ(&)( ). (E9) PY=1+—_—(ugés)—
.

a2 N+ 2
u
w2 7 10843

3
: : . X| —3(3N+22)+ 12(N+8) 72+ 2(43N+ 182 In —
The dependence ift| has disappeared, as it should, due to 33 ) (N+8)m (43N+182 "2
the identityy—2v+28—v(D—2)=0. 1
Combining with the definition oA™ in Eq. (E3), we get +144N+8)Li, _§> (Ugé )3, (F2)

(D-2) The numeric coefficien,, of Table 2 of[55] coincides per-
_D(4,,B*+a|:§) fectly, up to three loops, with our analytical expression,
4 - which has the advantage of being valid for Hll Its renor-
malized counterpart is defined by

(E10 P, =2 P, (F3)

where the renormalization constaff ! has been given to
three loops in Eq(15). The corresponding power series in
where we used Eq(E6) to obtain the last equality. Using Us follows readily:

b*=2vP, and b =3/2—2vP. [38], as well asA; _ — g

=1/(4m) from Eg.(8), we arrive to the amplitude ratiBc P =1-2(N+2)ug+4(N+2)(2N+17up+ 57 (N+2)

given in Eq.(104). X[ —3(36N2+ 837N+ 3920 + 24N+ 8) 72

+ A+ +y2 [ ¢0
Ro= TTAT_ () (g_

SRS
b+ Z*V(D*Z)A
_& TD(4VB* +aF*)

—\y—v(D-2 ’
GRS .o

+4(43N+182)In 2+ 288N+ 8)Li (- H)TuS, (F4)
APPENDIX F: DETERMINATION OF THE POLYNOMIAL

P, TO THREE LOOPS where we have used the relation betwegrandug given in

) ) ] ) . Eq.(13), the scaleu being identified with the inverse of the
In this section, we want to derive the analytical expressionygrrelation lengthtip = ugé, As. Equation(F4) is the poly-

for the polynomialP . up to three loops. It has been given nomjal whose strong-coupling expansion has to be calcu-

numerically, and resummed, fd=1,2,3 up to five loops in  |ated. The corresponding power series in the renormalized
[55], so that our analytical result will have to match this coupling constant: follows from Eq.(14):

reference. Abovd ., the relation betweem’s and the cor- _ .

relation length has been given in EE7) at the three-loop P+ =17 2(N+2)u+4(N+2)u+23(N+2)[ —3(63N

level. A polynomialPZ in powers ofug is defined through +572)+ 24(N+8) 72+ 4(43N+182)In 2

the relation
+288 N+ 8)Li,(—3)]ud. (F5)
P‘i:am’zB/ﬁgjz, (F1)  The reader can verify that the analytical result coincide, for
N=1,2,3, with the numerical values in Table 4 of R&f5].
It differs only in the fifth decimal place of the cubic teiep;
leading to of this table.
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