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Three-loop critical exponents, amplitude functions, and amplitude ratios from variational
perturbation theory

H. Kleinert and B. Van den Bossche*
Institut für Theoretische Physik, Arnimallee 14 D-14195 Berlin, Germany

~Received 21 November 2000; published 18 April 2001!

We use variational perturbation theory to calculate various universal amplitude ratios above and belowTc in
minimally subtractedf4 theory withN components in three dimensions. In order to best exhibit the method as
a powerful alternative to Borel resummation techniques, we consider only two- and three-loops expressions
where our results are analytic expressions. For the critical exponents, we also extend existing analytic expres-
sions for two loops to three loops.
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I. INTRODUCTION

Recently, quantum mechanical variational perturbat
theory @1# has been successfully extended to quantum fi
theory, where it has proven to be a powerful tool for det
mining critical exponents in three@2–4# as well as in 42e
dimensions@5,6#. The purpose of this paper it to apply th
theory to amplitude ratios that can be measured experim
tally. Their perturbation expansions suffer from the sa
asymptotic nature as those of the critical exponents, t
requiring delicate resummation procedures. These have
the subject of numerous studies, of that we can only men
a few, by various groups. There are two main approac
followed by various authors which we shall divide accordi
to their method into a Paris school and a Parisi school.

The Paris school follows Wilson’s ideas@7,8# by consid-
ering epsilon expansions inD542e dimensions, making
use of the fact that in the upper critical dimensionDup54 the
theory is scale invariant. The results are at first power se
in the renormalized coupling constantg. For small e, the
coupling constant goes, in the critical limit of vanishin
mass, to a stable infrared~IR! fixed point g→g* , where
scaling laws are found@9#. The position of the fixed point is
found as a power series ine that makes critical exponent
and amplitude functions likewise power series ine. These
series diverge. The large-order behavior@10,11# suggests tha
these series are Borel summable@12,13#. The exacte expan-
sions of the critical exponents are known up to five loo
@14,15#. They have been resummed with the help of Bo
transformations and analytic mapping methods in Refs.@16–
18#.

The Parisi school follows Ref.@19# in studying perturba-
tion expansions directly inD53 dimensions@20–25#. In the
original works, renormalization conditions are used acco
ing to which renormalized correlation functions should b
have for small momenta likeG(p)'(p21m2)21. Recently,
these normalization conditions have been replaced by dim
sional regularization nearD53 to remove divergences~see,
for instance,@23#, which uses a regularization inD532«

*On leave from Physique Nucle´aire Théorique, B5, Universite´ de
Liège Sart-Tilman, 4000 Lie`ge, Belgium.
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dimensions!. Contrary to thee expansions aroundDup54,
the system is not treated near the dimension of naive s
invariance, and the scaling properties are no longer obvi
order by order ing. In addition, singular terms violating
Griffith’s analyticity are introduced that show up by amp
tudes having unpleasant logarithmic dependences on the
pling constant.

The universal amplitude ratios were first discussed in@26#
in the context of Wilson’s renormalization group approac
and by Bervillier @27# within the field theoretic approach
developed in@9#. The experimentally most easily accessib
amplitude ratios are formed from the amplitudes of the le
ing power behaviors of various physical quantities inT
2Tc above and below the critical temperatureTc . A typical
example, and one of the best measured amplitude ratio
for the specific heat of superfluid helium above and bel
Tc . It was obtained in a zero-gravity experiment by Lip
et al. @28#, who parametrized the specific heat as follows~we
use the second of the references quoted in@28#!:

C65
A6

a
utu2a~11DutuD1Eutu2D!1B, t5T/Tc21,

~1!

with a520.010 5660.0004, D50.5, A1/A251.0442
60.001,A2/a52525.03,D520.006 87,E50.2152, and
B5538.55~J/mol K!. This parametrization is an approxima
tion to the Wegner expansion form

F5F6utux~11a0,1utuD01a0,2utu2D01a0,3utu3D01•••

1a1,1utuD11a1,2utu2D11a1,3utu3D11••• ! ~2!

with x a combination of critical exponents andF6 denoting
the leading amplitude above and belowTc , respectively.
Compared to this general Wegner expansion, higher pow
in D0[D have been neglected in Eq.~1!, as well as daughte
powersD i ,i>1. This will be also the case in the prese
work, where we shall take into account only one exponentD,
related tov by the relationD5vn.

Further amplitude ratios are formed from the amplitud
ai , j of the nonleading power behaviors inT2Tc , the so-
called confluent terms. Amplitude ratios of confluent term
are also universal quantities@25,29–31#. They are known up
©2001 The American Physical Society13-1
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to five loops belowTc @25# (N51), or even up to six loops
@30# (N51,2,3) if only theT.Tc regime is considered. (N
is the number of components of the field.! None of them will
be examined here.

Apart from critical exponents and amplitude ratios, e
perimental observations show that the equation of state
the free energy have a simple scaling form of the Wid
type, whose field-theoretic explanation can be found in v
ous textbooks@9,12,13#. For example, the free energy of
system with magnetizationMB may be represented nearTc

by F(t,MB)5utu22a f (utu/MB
1/b), with a andb being critical

exponents andt is the relative distance to the critical tem
perature. The scaling equation of state has been calculat
e expansions to ordere2 for general O(N) symmetry@32#
and to ordere3 for the Ising model (N51) @33#.

A. Perturbative calculation of amplitude ratios

Amplitude ratios relate the properties of the disorde
phase, which are easy to calculate, to those of the ord
phase, which are much harder to derive. Several meth
have been proposed to connect the two phases. One of
is due to Bagnuls and Bervillier@24#, and was applied furthe
in @25,34#. A similar procedure was followed in@22,23# for
the amplitude ratio of correlation lengths, which had be
omitted by Bagnuls and Bervillier. Calculations in three d
mensions are usually numerical@20,24,25#, although low or-
ders can be treated analytically~see@22,23,34# for analytic
three-loop results!. Such analytic studies are important sin
they offer insight into the nonanalyticity with respect to t
coupling constant. The amplitude ratio found in@22,23# is
restricted to the Ising caseN51. The same is true for@35#,
which includes all diagrams up to three loops, as is the c
of @34#. The latter work also incorporates a cubic anisotro
term, but for which the replica limitN→0 is considered,
allowing to probe the critical behavior of the weakly dilu
Ising system.

All power series are divergent and require resummati
Numerically, this has been done for the Ising model in@21#
to five loops for the critical exponents, various amplitu
ratios, and the equation of state. Reference@21# also contains
comparisons between the results of different groups~both for
D53 and D542e), with experiments and with high
temperature series. For the most up-to-date work, see@18#,
which besides the critical exponents and amplitude ratios
the Ising model also gives the critical exponents for gene
O(N) symmetry.

Another approach has been followed by Dohm and c
laborators in Aachen@36–38# who proposed to use an an
lytic renormalization scheme in the form of minimal subtra
tion when working inD53 dimensions. The use of th
minimal subtraction scheme in field theories at fixed dim
sions 2,D,4 has one important advantage: the renorm
ization constants are the same in both the symmetric ph
with T.Tc and the ordered phase withT,Tc . The renor-
malization constants are power series in the renormal
coupling constant with coefficients that are poles ine up to
the given order of the perturbative series
05611
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The most important property of this scheme is that the m
does not enter explicitly the expansions, which can theref
be used on both side ofTc . Since the critical exponents ar
related to the renormalization constants, the mass inde
dence of theZi implies a clear decomposition of the corr
lation functions into amplitude functions and power par
Working in three dimensions, there is a prize to pay: log
rithmic singularities in the coupling constant. They can
removed using suitable length scales. This may be the ph
cal length scalej1 aboveTc , and another length scalej2

related, in the critical regime, to the longitudinal mass bel
Tc . Since they are not exactly equals, the Aachen group
the length scalej2 a pseudolength. A precise definition o
j2 has been given in@36#. With different collaborators,
Dohm has applied this scheme to derive various critical
ponents and renormalization-group functions aboveTc @37#,
to calculate the heat capacity, the order parameter, and
superfluid density~both above and belowTc), as well as
some useful universal combination of observable quanti
@38#. So far, these works have been limited to low orde
The Ising model is the simplest system, since it contains
massless Goldstone modes that cause extra infrared s
larities at intermediate stages of perturbative calculations
the thermodynamical quantities on the coexistence cu
where the external magnetic field vanishes. The infrared
gularities are the reason why the analytical equation of s
and amplitude functions belowTc have been restricted
@27,38,39# to two loops for generalN. These extra infrared
singularities, which cancel at the end of the calculations,
caused by the physical singularities of the transverse sus
tibility. Being physical, they remain at the end. Due to the
difficulties, numerical studies up to five loops belowTc ,
with accurate Borel resummation are available only for
Ising case@21,25,40,41#. Only analytic three-loop calcula
tions for the thermodynamic quantities belowTc have be-
come recently available for the general O(N) system@42#.
Based on these, calculations in which some contributi
were evaluated up to five loops were done for amplitu
ratios atN52 andN53 @41#, proceeding as follows: Am-
plitude functions for the heat capacity were calculated us
the three-loop result of@42# and five-loop results for the
vacuum renormalization constant@41,43# and the critical ex-
ponenta. For a, use has been made of the values given
@17# for N51, of the value given in the first of Ref.@28# for
N52 ~this being the initial result of the space shuttle expe
ment, which was subsequently corrected!, and of the value
given in Ref. @44# for N53. Since then, the works
@2–6,13,18# have appeared and seem to be the best avail
references concerning resummed data. Although this is
the main subject of this paper, it is interesting to see in wh
way the new values ofa affect the amplitude ratios of the
heat capacity given in@41#. This will be done in Sec. IV.

In the following, we shall calculate amplitude ratios wi
the help of Kleinert’s variational perturbation theo
@1–6,13#. To exhibit the method most clearly, we shall ba
3-2
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THREE-LOOP CRITICAL EXPONENTS, AMPLITUDE . . . PHYSICAL REVIEW E 63 056113
our study on analytical results only. This will restrict us
the level of three loops. Working at such low orders, t
accuracy of our resummed values cannot compete with s
existing five-loop calculations. For this reason, we shall
include nor discuss error bars in the final results.

To illustrate the method of variational perturbation theo
we shall first show how to obtain analytic expressions for
critical exponents, thus extending an earlier two-loop a
lytic calculation in Ref.@5#. After this, we apply the proce
dure to amplitude ratios of various experimental quantiti
The critical exponents are computed directly from the ren
malization constants of the theory. In the minimal subtr
tion scheme, the renormalization constants have only p
terms ine. For the amplitude functions, this is no longer tru
in a D542e approach, they have to be expanded ine. For
this reason it is nota priori clear at which level the varia
tional method has to be applied. For the purpose of show
the power of the method to resum amplitude ratios, it is th
better to calculate amplitude ratios in three dimensions
resummation of amplitude ratios within thee-expansion
method is postponed to a later publication@45#. We shall also
consider only the expansions of the Aachen group, espec
their analytical two-loop@46# and three-loop@42# expan-
sions. As a bonus, since the renormalization constants ar
same~apart for trivial coefficients coming from the respe
tive conventions! in the minimal subtraction scheme inD
542e dimensions and in fixedD53 dimensions, the criti-
cal exponents will be the same in variational perturbat
theory. This will be shown explicitly below.

The paper is organized as follows. In Sec. II, we defi
the model and the conventions. In Sec. III, we briefly revi
the strong-coupling approach and apply it to the evalua
of the critical exponents at the level of two and three loo
extending the results of Ref.@5#. Section IV is the main par
of this paper, where we show how the strong-coupling lim
of various amplitudes and amplitude ratios are determin
In Sec. IV F, we use the latest available value for the ex
nentsa andn @2–6,13,18# to calculate the amplitude ratio o
the heat capacity and the universal combinationRC ~con-
structed from the leading amplitudes of the heat capacity,
order parameter, and the susceptibility aboveTc), for N
50, . . . ,4, and tocalculate the amplitude ratio of the su
ceptibilities in the Ising model (N51). Finally, we draw our
conclusion in Sec. V. For completeness, we have adde
Appendix containing all formulas taken from other public
tions, and calculations related to them.

II. MODEL AND CONVENTIONS

The critical behavior of many different physical system
can be described by an O(N)-symmetricf4-theory. In par-
ticular, the caseN50 describes polymers,N51 the Ising
transition ~a universality class that comprises binary fluid
liquid-vapor transitions, and antiferromagnets!, N52 the su-
perfluid helium transition,N53 isotropic magnets~transition
of the Heisenberg type!, andN54 phase transition of Higgs
fields at finite temperature. In the presence of an exte
field hB , the field energy is given by the Ginzburg-Land
functional
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2
~¹fB!21

1

2
r 0fB

21uB~fB
2 !22hB•fBG .

~4!

To facilitate comparisons with the results of Dohm and c
workers@42,46#, we use the same normalizations. The fie
fB and the external magnetic fieldhB haveN components,
uB is the bare coupling constant, andr 0 a bare mass term, to
be specified later. The integrals are evaluated in dimensio
regularization. In dimensionD53, f4-theory is super-
renormalizable. This means that only a finite number
counterterms have to be added in order to make observa
finite. More economically, the divergencies can be remov
by a shift of the mass term and reexpanding inr 02r 0c ,
where r 0c is the critical value ofr 0. In e-expansions,r 0c
vanishes. Near the critical temperature,r 0 behaves liker 0c
1a0t, where t is the reduced temperature (T2Tc)/Tc .
When working nearD53 dimensions, it is possible to use
simplified shiftdr 0 that only contains theD53 pole of r 0c
~and not the poles atDl.3 with l 53,4,5, . . . , where Dl
[422/l ). For convenience, we write the differences as
new mass term:r 02r 0c5mB

2 and r 02dr 05m8B
2 . In this

way, we arrive at a new bare theory, with a mass termm8B
2

that may be considered as the physical square mass o
theory. The introduction of the massmB8 makes the theory
finite. It has, however, to be distinguished from the ma
field, and coupling-constant renormalization that still has
be performed: this latter renormalization, related to the int
duction of the renormalization constantsZi , is nothing else
than a change of variables reflecting the fundamental sc
invariance hypothesis of the renormalization group approa
The distinction between the two steps—making the the
finite and renormalizing—is irrelevant inD542e dimen-
sions becauser 0c50 at e50: Finiteness of the theory an
the renormalization program are more intimately related th
in D53 dimensions. For a thorough discussion of the diff
ence between the renormalization inD542e and fixedD
53 dimensions, see@24,25#, in particular p. 7215 in@24#.

Within the minimal subtraction scheme, the renormaliz
tion constantsZ, which are introduced to remove the poles
D54, are given by

mB
25m2

Zm2

Zf
, ~5!

ADuB5me
Zu

Zf
2

u, ~6!

fB5Zf
1/2f, ~7!

the quantities on the right-hand side~rhs! being the renor-
malized ones. In Eq.~6!, m is an arbitrary reference mas
scale and

AD5G~11e/2!G~12e/2!S̄D , with S̄D5
2pD/2

G~D/2!~2p!D

~8!
3-3
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is a convenient geometric factor. The numberS̄D is equal to
SD /(2p)D whereSD is the surface of a sphere inD dimen-
sions. SinceAD goes toS̄D whenD→4, the renormalization
constants have the same form@47# in D53 as inD542e,
and the resummation for the critical exponents is ident
for the two approaches. This will be made clear below. F
the amplitude calculations, however, things are different
the expansions are truncated at some order, they turn o
depend on the difference betweenAD and S̄D . Rather than
saying that the normalization ofAD is a matter of conve-
nience to simplify theD dependence of lower order resul
@36,37#, we shall see that the use of the geometric factor~8!
improves low-order results: For example, the one-loop
pansion of the amplitude function for the order paramete
identical to the zero-loop order@38#.

With these conventions and notations, the renormaliza
constants in minimal subtraction are given up to three lo
by @13–15#

Zm2511
4~N12!

e
u18~N12!F2~N15!

e2
2

3

e Gu2

18~N12!F8~N15!~N16!

e3

2
4~11N150!

e2
1

31N1230

e Gu3, ~9!

Zu511
4~N18!

e
u116F ~N18!2

e2
2

5N122

e Gu2

1
8

3 F24~N18!3

e3
2

16~N18!~17N176!

e2

1
96z~3!~5N122!135N21942N12992

e Gu3,

~10!

Zf512
4~N12!

e
u22

8

3
~N12!~N18!S 4

e2
2

1

e D u3.

~11!

They are related to that in Ref.@13# by the replacementu
→g/12. This factor comes from the different coefficient
the coupling termu→g/4! in Eq. ~4! and the fact that a
factor 1/(4p)2 is absorbed in the definition ofg in @13#,
whereas a factorAD5451/(8p2) is included here.

These renormalization constants serve to calculate
critical exponents including the exponentv that character-
izes the approach to scaling. This is the subject of Sec. II
which we illustrate the working of variational perturbatio
theory.
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III. EXACT CRITICAL EXPONENTS UP TO
THREE LOOPS

Variational perturbation theory has been developed
the calculation of critical exponents in@2# and @5# in D53
and D542e dimensions, respectively. A review can b
found in the textbook@13#. So we need to recall here only th
main steps of the procedure.

Let f L(ūB) be the partial sum of orderL of a power series

f ' f L~ ūB!5(
i 50

L

f i ūB
i . ~12!

In the present context,

ūB5uBm2eAD ~13!

with D53 ande51, i.e.,ūB5uB /(4pm). The mass scalem
will be specified later. As seen from Eq.~6!, this scale leads
to a dimensionless coupling constantūB . We assume that in
Eq. ~12!, the ultraviolet ~UV! divergencies have been re
moved. In D53 dimensions, this is achieved by workin
with mB

2 instead ofr 0. However, r 0c is a nonperturbative
quantity in three dimensions, and working withmB

2 or m8B
2

generates nonanalyticities due to the presence of logarit
of the coupling constant. These will be removed by the
troduction of the correlation lengthz1 aboveTc and of the
length z2 below Tc , see@38#. The mass scalem will be
identified with the inverse of these correlation lengthsz6

21 in
the two phases. Since the correlation lengths go to infin
like utu2n as the critical point is approached, the series ha
be evaluated in the limit of an infinite dimensionless ba
coupling constantūB . In the renormalization group ap
proach, this regime is studied by mapping the expressi
into a regime of finite renormalized quantities using t
renormalization constants~5!–~7!. If we can find directly the
strong-coupling limit, this renormalization is avoidable. T
understand this, consider the relation between the renorm
ized and the bare coupling constant at the one-loop ordeu
5uBm2e2c/e(uBme)2, wherec is a constant. At the critica
point, m→0, or ūB→`, and the series expansion brea
down. If we sum a ladder of loop diagrams, we obtain 1u
51/(uBm2e)1c/e. Now critical theory can easily be
reached to give a renormalizedu* 5e/c. A strong-coupling
expansion in the bare coupling will turn out to give the sa
result. From our point of view, the renormalization grou
approach is simply a specific procedure of evaluating po
series in the strong-coupling limit.

In D542e dimensions, the situation is slightly more in
volved since renormalization is also necessary to obtain U
finite quantities, the mass shiftr 02r 0c not being sufficient
for this goal as in the super-renormalizable caseD53, since
r 0c50 ase→0. As far as this paper is concerned, we sh
make use of the fact thatD53 and D542e dimensions
series expansions in terms of renormalized quantities
available in the literature. These will be converted back
bare expansion, using the inverse of Eqs.~5!–~7!. For D
53 dimensions, this expresses all physical quantities
powers ofuB /m. The mass scalem is identified withz6

21 in
3-4
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the disordered or ordered phase, respectively. InD542e
dimensions, the critical theory is obtained by identifyingm
→m with the renormalized massm in the disordered phase
In a subsequent publication@48#, we will show how to per-
form directly a calculation in terms of UV-finite bare qua
tities in D542e. In this way, the renormalization procedu
is superfluous, our sole problem being the evaluation of
expansions in the limit of infinite coupling constant.

Inverting Eq.~6!, we have the expansion

u5ūBH 12
4~N18!

e
ūB18F2~N18!2

e2
1

3~3N114!

e G ūB
2

28F8~N18!3

e3
1

32~N18!~3N114!

e2

1
96z~3!~5N122!133N21922N12960

3e G ūB
3J . ~14!

The expansion~14! has the same strong-coupling limit i
D53 andD542e dimensions, and it does not matter th
m5z6

21 for D53 or m5m for D542e since both quanti-
ties go to zero in the critical limit with the same powerutu2n.
With relation ~14! betweenu and ūB , we obtain the bare
coupling expansion of the renormalized square mass
fields:

m2[Zr
21mB

25mB
2 H 12

4~N12!

e
ūB14~N12!

3F4~N15!

e2
1

5

e G ūB
2216~N12!

3F4~N15!~N16!

e3
1

53N1274

3e2

1
~5N137!

e G ūB
3, ~15!

f[Zf
21/2fB5fBF11

2~N12!

e
ūB

22
4

3
~N12!~N18!

3S 8

e2
1

1

e D ūB
3 G . ~16!

These two expressions are sufficient to calculate the crit
exponentsn andg and, via scaling relations, all other exp
nents. Note that the value of the renormalized coupling c
stant at the critical pointu* is not needed to obtainn andg.
The expansion~14! is, however, useful for obtaining an ac
curate exponentv of the approach to scaling. It was pointe
out in @49# that v can also be deduced from the expansio
of n and g. However, to reach the same accuracy, this
quires always one more loop compared to the loop order
are interested in. For this reason, we shall take the advan
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of Eq. ~14!, whose three-loop order contains all necess
information to getv to that given order.

A. Method

Starting from Eq.~12!, we follow @2,5,13# to write its
strong-coupling limit as

f L~ ūB→`!5optûBF(i 50

L

f i ûB
i (

j 50

L2 i S 2 i e/v
j D ~21! j G .

~17!

The symbol optûB
denotes optimization with respect toûB .

This expression holds provided it yields a nonzero const
This limit will be denoted byf * :

f ~ ūB→`!5 f * 1c0ūB
2v/e1O~ ūB

22e/v!, ~18!

where c0 is a constant. The optimalization is supposed
makef depend minimally onûB . In practice, this amounts to
taking the first derivative to zero~odd orders! or, when it
yields complex results, to taking the second derivative
zero and selecting turning points.

After having determined the optimum at various orderL,
it is still necessary to extrapolate the result to infinite ord
L→`. The general large-L behavior of the strong-coupling
limit has been derived from an analysis in the complex pla
in @2,13#:

f L* ' f * 1c1 exp~2c2L12v!, ~19!

with constantsc1 and c2.0. Knowing this behavior, a
graphical extrapolation procedure may be used to findf *̀
5 f * .

To apply the above algorithm to critical exponents, w
proceed as follows: LetWL be a function obtained from per
turbation theory. It has an expansion

WL~ ūB!5(
i 50

L

WiūB
i . ~20!

Suppose that we also know this function has a leading po
behavior ūB

p/q for large ūB . The powerp/q is given by a
logarithmic derivative

p

q
5

d ln WL

d ln ūB

. ~21!

The right-hand-side is a power series representation o
function of the type~12!, with p/q being f * and the ap-
proach tof * in the form of powersūB

2v/e . Equation~21! will
be used later for the determination of the critical exponen
If the series~20! goes to a constant in the strong-couplin
limit, the exponentp is vanishing, and we are left with

d ln WL

d ln ūB

50. ~22!
3-5
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This equation can be solved forq, i.e., for v. Note that Eq.
~21! strictly holds forpÞ0. However, it can be shown tha
this equation may be used also forp50, i.e., that Eq.~22! is
a consistent equation for functions that go to a constant in
strong-coupling limit. This is explained in Appendix A. I
the following, we shall directly use Eqs.~21! and ~22! for
two- and three-loop expansions where everything can be
culated analytically. We give below the associated formu
resulting from Eq.~17!. Settingr511e/v, we find for L
52:

f L52* 5optûB
~ f 01 f 1rûB1 f 2ûB

2 !5 f 02
r2

4

f 1
2

f 2
, ~23!

while the three-loop resultsL53 lead to

f L53* 5optûB
~ f 01 f̄ 1ûB1 f̄ 2ûB

21 f 3ûB
3 !

5 f 02
1

3

f̄ 1 f̄ 2

f 3
S 12

2

3
r D1

2

27

f̄ 2
3

f 3
2 ~12r !, ~24!

where f̄ 15 f 1r(r11)/2,f̄ 25 f 2(2r21),r 5A123 f̄ 1f 3 / f̄ 2
2.

If the square root is imaginary, the optimal value is given
the unique turning point. Practically, and this is a virtue
the analytic result, this square root is always imaginary
D53, at least as for the exponentv. The turning point con-
dition leads to

f L53* 5 f 02
1

3

f̄ 1 f̄ 2

f 3
1

2

27

f̄ 2
3

f 3
2

, ~25!

i.e., to same expression as Eq.~24!, but with r 50. In the
caseD542e with e→0, r is real. However, forv the
e-expansion ofr produces higher orders ine than the three-
loop approximation admits. Then, in bothD53 and the
e-expansion, Eq.~25! is the relevant equation. A word o
caution is, nevertheless, necessary: The positive rootr of

ûB* 5
f 2

3 f 3
~216r ! ~26!

has to be chosen in order to match the three-loop result
the two-loop one in the limitf 3→0. Doing so, it must be
assumed thatf 2 and f 1 are nonvanishing. When optimizin
with f 250, it is straightforward to show that iff 1f 3.0, then
the optimum corresponds toûB* ( f 2→0)50 and f L53* 5 f 0.
The other possibility,f 150, is also interesting since it oc
curs in the determination of the exponenth. It can be veri-
fied that f 150 implies taking the negative rootr 521, so
that ûB* ( f 1→0)522 f̄ 2 /(3 f 3) and f 3* 5 f 014 f̄ 2

3/(27f 3
2).

This possibility has not been discussed in the previous wo
@2,5,13#.

B. Critical exponents

After the introduction to the resummation method to
used in this work, we can now turn to the actual determi
05611
e

l-
s

y
f
r

th

s

-

tion of the critical exponents. We start from the definitio
within the conventional renormalization formalism of th
functions

gm5
m

m2

]m2

m U
B

, ~27!

gf5m
]

]m
ln ZfU

B

, ~28!

bu5m
u

]m U
B

, ~29!

which, in the critical regimemB
2→0, render the critical ex-

ponentshm5gm* and h5gf* if the first two equations are
calculated at the fixed pointu* determined by the zero of th
third functionbu . The derivative ofbu at u* is the critical
exponent of the approach to scalingv5]bu /]uuu* .

Using the relation between the bare coupling constantuB
and the reduced oneūB given in Eq.~13!, Eqs.~27! and~28!
become

hm52e
d

d ln ūB

ln
m2

mB
2

52e
d

d ln ūB

ln Zr
21 , ~30!

h5e
d

d ln ūB

ln
f2

fB
2

52e
d

d ln ūB

ln Zf
21/2, ~31!

where the renormalization constantsZr
21 and Zf

21/2 have
been explicitly given up to three loops in Eqs.~15! and~16!,
respectively. The associated power series expansion inūB of
the exponentshm andh will now be treated with the help o
the formalism described in the previous section, up to t
and three loops.

C. Critical exponents from two-loop expansions

In order to calculate the two-loop expansions in the cr
cal strong-coupling limit, we need to knowv to this order.
This will be calculated from Eq.~14!. Dividing this series by
ūB , we know that the leading power behavior asūB→` is
21 since u is supposed to go to the constant valueu* :
uūB

21u ū→`5u* ūB
21 . Calculating the logarithmic derivative

of Eq. ~14! and expanding up to second order inūB , we have

d

d ln ūB

ln
u

ūB

5
24~N18!

e
ūB

116F ~N18!2

e2
1

3~3N114!

e G ūB
2 . ~32!

We now apply formula~A4!. Combining with Eq.~23!, we
identify

2152
r2

4

@24~N18!/e#2

16@~N18!2/e213~3N114!e#
, ~33!
3-6
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i.e.,

r2

4
5113e

3N114

~N18!2
, ~34!

from which we can deducev:

v5
e

r21
5

e

2112A113e~3N114!/~N18!2
. ~35!

It is identical to the result obtained in@5#. As a check of Eq.
~35!, we verify that it reproduces the well-know
e-expansion

ve5e23e2~3N114!/~N18!2. ~36!

We refer the reader to@5,13# for plots of the function~35! as
e goes from 0 to 1, and for a comparison with the un
summede-expansion. The strong-coupling limit ofv may
also be calculated from Eq.~A1! with an analytic expression
different from Eq.~35!, although numerically they are prac
tically the same, and they certainly have the sa
e-expansion@49#.

This determination ofv illustrates what we said in Sec
II, that in the minimal renormalization scheme the critic
exponents lead to identical results inD53 and D542e
dimensions. This will also be true for the critical exponen
to be calculated in the sequel@50#. For this reason, we sha
always keep track ofe to facilitate the comparison, althoug
our work is inD53 dimensions. Only for amplitude ratios t
be calculated later will such a comparison be impossible
e be set equal to 1 everywhere.

Knowing v, we can now determine the exponentsh and
hm . According to Eqs.~30! and ~31!, we take the logarith-
mic derivative of Eqs.~15! and~16!, reexpand the results u
to the second order inūB

2 , and obtain

hm54~N12!ūB28~N12!F2~N18!

e
15G ūB

2 , ~37!

h58~N12!ūB
2 . ~38!

Evaluatinghm in the strong-coupling limit in the same wa
asv, i.e., following the algorithm~17!, we find

hm5
r2

4

@4~N12!#2

8~N12!@2~N18!/e15#

5
~N12!

~N18!15e/2F e1e2
3~3N114!

~N18!2 G . ~39!

For h, the situation is less clear. In@2,5#, it was argued that
the two-loop result cannot be computed from Eq.~38! since
no linear term inūB is present. A direct application of th
resummation algorithm would give an optimumûB* 50, then
a valueh50 at two-loop order. This does not lead to th
correcte-expansion, according to which the exponent sta
with e2, i.e., with a nonvanishing two-loop contribution. T
apply variational perturbation theory, it is necessary
05611
-

e

l

s

d

s

o

modify the procedure. In Ref.@5#, this was done by consid
ering a different critical exponent

g5n~22h!, ~40!

with

n5
1

22hm
. ~41!

To obtain their strong-coupling limit, we insert forhm andh
their perturbative expansions~37! and~38!, respectively, and
reexpand the resulting ratios in power ofūB up to the second
order. This gives

g5112~N12!ūB24~N12!F2~N18!

e
2~N24!G ūB

2 .

~42!

The critical exponentn itself has the expansion

n5
1

2
1~N12!ūB22~N12!F2~N18!

e
2~N23!G ūB

2 .

~43!

The strong-coupling limits are, usingr2/4 from Eq.~34!,

g511
~N12!

2~N18!2e~N24! F e1e2
3~3N114!

~N18!2 G , ~44!

n5
1

2 H 11
~N12!

2~N18!2e~N23! F e1e2
3~3N114!

~N18!2 G J .

~45!

Their e-expansion are in agreement withD542e results
@5,13#. From these expressions we can recoverh using the
relationh522g/n. The result has now the correcte expan-
sion:

h5
N12

2~N18!2
e2. ~46!

This calculation ofh via n and g was made in@2,5# to
compensate the lack of a linear term in Eq.~38!. Let us point
out that, even if thee-expansion is not recovered, it is nev
ertheless hidden in a direct resummation of Eq.~38! to h
50. To see this, we add a small dummy linear termzu, to
the defining equation~31!, leading to the expansion

h5zūB1F8~N12!2z
4~N18!

e G ūB
2 . ~47!

Using Eqs.~23! and ~34!, this leads to the strong-couplin
value

h52
r2

4

z2

8~N12!24~N18!z/e
, ~48!

which is zero forz50. Consider, however, thee-expansion
3-7
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of the right-hand-side performed at a finitez:

h5
r2

4

ze

4~N18! F11
2~N12!

N18

e

zG . ~49!

If we now take the limitz→0, the right-hand-side start
directly like e2. Together with the lowest-order value 1 o
r2/4, we obtain correctly Eq.~46!.

For consistency, the different two-loop results forh, once
from Eqs. ~44! and ~45!, and onceh50 from Eq. ~48!
should not be too far from each other. This can indeed
verified by plotting the curvesh522g/n against a few val-
ues ofN. The curves are all close to theh50 axis for allN,
approaching it forN→`.

Also for higher-loop orders,h could be obtained from the
strong-coupling limit ofg andn, or by taking a direct strong
coupling limit. Variational perturbation theory does n
know which of these approaches should be better. U
mately, if we know enough terms in the series expansion,
extrapolation to infinite orderL should certainly become in
sensitive to which function is resummed.

One may wonder if it is possible to set up a unique op
mal function of the critical exponents from which to deriv
the strong-coupling limit. The answer to this question wou
improve the theory considerably.

Collecting the different results of this section, we have
D53 results

v5
1

2112A113~3N114!/~N18!2
, ~50!

g5
2N3163N21540N11492

~N18!2~N120!
, ~51!

n5
N3131N21262N1714

~N18!2~N119!
, ~52!

hm5
2~N12!

2N121 F11
3~3N114!

~N18!2 G , ~53!

h5
2~N12!

N120

~N18!213~3N114!

2~N18!315~N18!213~N12!~3N114!
,

~54!

u* 5
1

4~N18!
1

3

4

3N114

~N18!3
, ~55!

where we also included the value of the renormalized c
pling constant at the IR-fixed point. It is obtained from t
one-loop series inu of the expansion~14!:

u5ūB2
4~N18!

e
ūB

2 . ~56!
05611
e

i-
e

-

e

-

We can restrict ourselves to one loop since it correspond
a powerūB

2 . The two-loop calculation was, however, need
to getv correctly, which itself enters Eq.~56!. With the help
of Eq. ~23!, we obtain

u* 5
r2

4

e

4~N18!
5

e

4~N18!
1

3

4

3N114

~N18!3
e2. ~57!

Since only two critical exponents are independent@12,13#,
all other can be derived from Eqs.~50!–~54!. These two-loop
expressions are only a lowest approximation to the ex
results. In the next section, we evaluate analytically
strong-coupling limit of the exponents at the three-loop lev

D. Critical exponents from three-loop expansions

The three-loop calculations are algebraically more
volved. Moreover, as far as the critical exponents are c
cerned~we will see later that this is not necessarily true f
the amplitude functions! the optimum of the function~17! is
not given by the vanishing of the first derivative, but by
turning point, i.e., by the vanishing of the second derivati
At the three-loop order, this implies that the parameterr in
Eq. ~24! is zero, leading to the three-loop strong-coupli
limit result ~25!. It is this feature that renders the calculatio
analytically manageable, involving only a cubic equation
the determination ofr ~without r 50, we would have had to
solve an eight-order equation!. In order to obtainv to three
loop, we generalize Eq.~32! to the same order, and find

21[
d

d ln ūB

ln
u

ūB

5
24~N18!

e
ūB116F ~N18!2

e2
1

3~3N114!

e G ūB
2

28F8~N18!3

e3
1

60~N18!~3N114!

e2

1
96z~3!~5N122!133N21922N12960

e G ūB
3 .

~58!

From this we extract the coefficientsf i( i 50, . . . ,3) of Eq.
~24!. The argument of the square rootr then turns out to be
negative, and the equation to be solved is Eq.~25!. This is
true not only fore51, but also for alleP@0,1#. Since Eq.
~25! is a cubic equation forr, there are three solutions, on
of which is always negative, which we discard as unphysic
leaving us with two solutions. Only one of them is connect
smoothly to the two-loop result. The purely algebraic for
of the solution, generalization of the square root com
from solving Eq.~34!, is somewhat too lengthy to be writte
down here. As a check, we have derived its epsilon exp
sion that reads
3-8
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re521
3~3N114!

~N18!2
e2

96z~3!~5N122!~N18!133N31214N211264N12512

4~N18!4
e2 ~59!

and leads to the correcte-expansion forv5e/(r21):

ve5e2
3~3N114!

~N18!2
e21

96z~3!~5N122!~N18!133N31538N214288N19568

4~N18!4
e3, ~60!

which is the extension of Eq.~36! to the ordere3. This is to be compared with Eq.~17.15! of the textbook@13#.
The trigonometric representation is, however, compact enough to be written down here explicitly, at least foe51.

Introducing an angleu and two coefficientsa0 ,b0 defined by

u5arccosS @13 77614738N1N2~8N1405!196~5N122!z~3!#2

2@1061N~N128!#$~N18!@13 77614738N1N2~8N1405!196~5N122!z~3!#%3/2

3
1

@2 209 66411 040 160N1162 982N219683N31184N41672~N18!~5N122!z~3!#3/2

3$67 181 166 592164 001 040 384N125 893 312 000N215 641 828 480N31713 027 988N4154 733 044N5

12 760 157N6188 332N711440N82192~N18!~5N122!@4 084 86411 952 480N1323 706N2120 021N3

1514N4#z~3!1746 496@~N18!~5N122!z~3!#2% D , ~61!

a05
1

446 3361213 280N135 334N212179N3156N42864~N18!~5N122!z~3!
~62!

b053A~N18!@1377614738N1N2~8N1405!196~5N122!z~3!#

3A@2 209 66411 040 160N1162 982N219683N31184N41672~N18!~5N122!z~3!#, ~63!

the relevant root of Eq.~25! can be written as

r52
1

6
1

256

3
a0@1061N~N125!#22a0b0 cosS 22p1u

3 D . ~64!

For the physically interesting casesN50, . . . ,4, weobtain the values forD53 dimensions

N 0 1 2 3 4

r 2.41829 2.40384 2.38683 2.36910 2.35157
v 0.705073 0.712332 0.721069 0.730405 0.73988

v ~Ref. @13#! 0.8035 0.7998 0.7948 0.7908
v ~Ref. @18#! 0.812 0.799 0.789 0.782 0.774

where we also indicated the theoretical values given in Refs.@13,18#.
Figure 1 illustrates the two- and three-loop critical exponents of the approach to scalingv5e/(r21) as a function ofN

calculated from Eqs.~34! and ~64!, respectively. For comparison, we also give the three-loop unresummed result~60!,
evaluated ate51 and the theoretical values given in Tables 1 and 3 of@18#. The latter are based on a five-loop analy
supplemented by a large loop order analysis.

Oncev is known to three loops, the other exponents and the strong-coupling limitu* of the renormalized coupling constan
can be determined to the same order. To obtainu* , the two-loop expansion ofu in powers ofūB is enough since it is of orde
O(ūB

3). Recall that the three-loop expansion ofu(ūB) is needed only to calculatev. From Eq.~14! we identify f 1 , f 2 , f 3 and
use Eq.~25! @since the argument of the correspondingr in Eq. ~24! is negative# to obtain the critical value
056113-9
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u* 5
e~N18!r~r11!~2r21!

12@2~N18!213e~3N114!#
2

2e~N18!3~2r21!3

27@2~N18!213e~3N114!#2
~65!

with r from Eq. ~64!. If we use instead thee-expansion ofr given in Eq.~59!, we obtain

u* 5
e

4~N18!
1

3

4

3N114

~N18!3
e21

454411760N1110N2233N3296~N18!~5N122!z~3!

32~N18!5
e3. ~66!

In the same way, we find the strong-coupling limit of the critical exponentsg andn, as defined in Eqs.~40! and~41! together
with Eqs.~30! and~31!, the latter two exponents being obtained from the mass~15! and wave function~16! renormalization,
respectively. The three-loop perturbative expansions are

g5112~N12!ūB24~N12!F2~N18!

e
2~N24!G ūB

214~N12!F8~N18!2

e2
2

4~2N22N2106!

e

11941N~2N117!G ūB
3 , ~67!

n5
1

2
1~N12!ūB22~N12!F2~N18!

e
2~N23!G ūB

2

14~N12!F4~N18!2

e2
2

2~2N21N290!

e
1951N~N19!G ūB

3 , ~68!

from which it is straightforward to identify the expansion coefficientsf 0 , . . . ,f 3 that enter Eq.~25!, to obtain

g512
e~N12!@e~N24!22~N18!#r~r11!~2r21!

3@8~N18!224e~2N22N2106!1e2~2N2117N1194!#

1
8e~N12!@e~N24!22~N18!#3~2r21!3

27@8~N18!224e~2N22N2106!1e2~2N2117N1194!#2
, ~69!

n5
1

2
2

e~N12!@e~N23!22~N18!#r~r11!~2r21!

12@4~N18!222e~2N21N290!1e2~N219N195!#
1

e~N12!@e~N23!22~N18!#3~2r21!3

27@4~N18!222e~2N21N290!1e2~N219N195!#2
,

~70!

wherer for e51 can be obtained from Eq.~64!. The associatede-expansions can be obtained using Eq.~59!. They read

g511
N12

2~N18!
e1

~N12!~N2122N152!

4~N18!3
e21

~N12!@310412496N1664N2144N31N4248~N18!~5N122!z~3!#

8~N18!5
e3,

~71!

n5
1

2
1

N12

4~N18!
e1

~N12!~N13!~N120!

8~N18!3
e2

1
~N12!@864015904N11412N2189N312N4296~N18!~5N122!z~3!#

32~N18!5
e3. ~72!
056113-10
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Figures 2 and 3 illustrate the two- and three-loop criti
exponentsg andn, respectively, as a function ofN. They are
given by Eqs.~51! and~69! for g and by Eqs.~52! and~70!
for n. For completeness, we also plot thee-expansions~71!
and ~72! of the exponents, as well as the theoretical valu
quoted in Tables 1 and 3 of@18#. Contrary to the case of th
critical exponentv, we see that the two- and three-loop cri
cal exponents are very close together. This is a virtue
working self-consistently withv obtained at the same loo
order. In@2,5#, the extrapolatedv to infinite loop order was
used instead. This implies that each loop-order result fog
andn was not very close to its asymptotic limit~contrary to
what we get here!. However, the extrapolation formula~19!
works precisely for this case, and very precise extrapola
results forg andn could be obtained. In our present wor
the critical exponents are not very far from their asympto
limit, already at the two- and three-loop level. However, t
extrapolation formula~19! cannot be used. It is not yet clea
to the authors how it will be possible to extrapolate the fiv
loop results obtained using the present formalism. This qu
tion is left aside for a future work. We also note in passi
that thee-expansion result is not too far from the valu
obtained in the strong-coupling limit.

The critical exponenth is obtained using 22g/n, with g
and n from Eq. ~69! and ~70!, respectively. It has thee
expansion

FIG. 1. Two-loop~short-dashed! and three-loop~solid! critical
exponentv for different O(N) symmetries. For comparison, th
e-expansion~mixed-dashed! and the theoretical values of@18#
~dots! are also given.

FIG. 2. Two-loop~short-dashed! and three-loop~solid! critical
exponentg. For comparison, thee-expansion~short- and long-
dashed! and the theoretical values of@18# ~dots! are also given.
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h5
~N12!

2~N18!2
e22

~N12!~N2256N2272!

8~N18!4
e3. ~73!

Let us also calculate directly the strong coupling limit ofh
from its definition~31!:

h58~N12!ūB
228~N12!~N18!S 8

e
11D ūB

3 . ~74!

At the two-loop level, the result was zero. At the three-lo
level, the calculation is different from that ofg and n be-
cause there is no linear term inūB . This has already been
discussed after Eq.~26!: although we are working at the
three-loop level, the optimum of the variational perturbati
theory is not governed by a turning point but by an ext
mum for which the sign of the rootr is the opposite to the
usual case. The solution corresponds tor 521 and the op-
timum is ûB522 f̄ 2 /(3 f 3), so that

h5
4

27

f̄ 2
3

f 3
2

5
32

27

~2r21!3~N12!

~N18!2~81e!2
e2. ~75!

With Eq. ~59!, this leads again to the correcte-expansion
~73!. The difference betweenh522g/n and Eq.~75! at e
51 is illustrated in Fig. 4 that also shows the direct evalu
tion of thee-expansion series~73! as well as the theoretica
values quoted in Tables 2 and 3 of@18#.

It is amusing to see that thee expansion is the best ap
proximation, followed by the strong-coupling limit of th
direct series~75!. Comparing the different results, we se
that they differ by about 30%. This is due to the absolu
smallness ofh. The error is small compared to unity.

To end this section we also give the critical exponenthm .
Up to three loops, the bare perturbation expansion re
from Eqs.~15! and ~30!,

FIG. 3. Two-loop~short-dashed! and three-loop~solid! critical
exponentn. For comparison, thee-expansion~short- and long-
dashed! and the theoretical values of@18# ~dots! are also given.
3-11
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hm54~N12!ūB28~N12!F2~N18!

e
15G ūB

2116~N12!

3F4~N18!2

e2
1

2~19N1122!

e
13~5N137!G ūB

3 , ~76!

from which we deduce the strong-coupling limit withr from
Eq. ~64!

FIG. 4. Two-loop~short-dashed! and three-loop~solid! critical
exponenth from the definition 22g/n. For comparison, thee ex-
pansion~short- and long-dashed!, h from the strong-coupling limit
of the direct~medium-dashed! series~75! and the theoretical value
of @18# ~dots! are also given.
e

g
-

lue
e

th
n

05611
hm5
e~N12!~2N11615e!r~r11!~2r21!

3@4~N18!21e~38N1244!13e2~5N137!#

2
4e~N12!~2N11615e!3~2r21!3

27@4~N18!21e~38N1244!13e2~5N137!#2
.

~77!

Its e expansion is

FIG. 5. Two-loop~short-dashed! and three-loop~solid! critical
exponenthm from the definition 22n21. For comparison, thee
expansion~short- and long-dashed!, hm from the strong-coupling
limit of the direct ~medium-dashed! two-loop ~39! and three-loop
~long-dashed! series~77! and the theoretical values of@18# ~dots!
are also given.
hm5
N12

N18
e1

~N12!~13N144!

2~N18!3
e21

~N12!@531212672N1452N223N3296~N18!~5N122!z~3!#

8~N18!5
e3. ~78!
The result~77! is analytically different but numerically clos
to that obtained via the scaling relation~41!, implying hm
522n21, as illustrated in Fig. 5. For completeness, the fi
ure also shows thee expansion~78! and the theoretical val
ues quoted in Tables 2 and 3 of@18#.

We see a better agreement with the theoretical va
quoted from @18# when the exponent is evaluated in th
strong-coupling limit of the direct series~39! and ~77!. This
was also the same for the exponenth.

Collecting the different results of this section, we have
analytical form of theD53 dimensions critical exponents i
the three-loop order

v5
1

r21
, ~79!

g511
~N12!~N120!r~r11!~2r21!

3~2N21149N11130!

2
8~N12!~N120!3~2r21!3

27~2N21149N11130!2
, ~80!
-

s

e

n5
1

2
1

~N12!~N119!r~r11!~2r21!

12~N2171N1531!

2
~N12!~N119!3~2r21!3

27~N2171N1531!2
, ~81!

hm5
~N12!~2N121!r~r11!~2r21!

3~4N21117N1611!

2
4~N12!~2N121!3~2r21!3

27~4N21117N1611!2
, ~82!

h5
32

2187

~2r21!3~N12!

~N18!2
, ~83!

u* 5
~N18!r~r11!~2r21!

12@2~N18!213~3N114!#

2
2~N18!3~2r21!3

27@2~N18!213~3N114!#2
, ~84!
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wherer is given in Eq.~64!. Forh andhm , we took the strong-coupling limit of the direct expansions: Eq.~75! for h and Eq.
~77! for hm . These results have to be compared with the two-loop ones given in Eqs.~50!–~54!.

For completeness, we give below the table of the critical exponents to three loops and the comparison with Refs.@13,18#:

N 0 1 2 3 4

g 1.16455 1.2338 1.29426 1.34697 1.39307
g ~Ref. @13#! 1.1576 1.2349 1.3105 1.3830
g ~Ref. @18#! 1.1596 1.2396 1.3169 1.3895 1.456

n 0.587376 0.623381 0.654552 0.681561 0.705071
n ~Ref. @13#! 0.5874 0.6292 0.6697 0.7081
n ~Ref. @18#! 0.5882 0.6304 0.6703 0.7073 0.741

hm 0.311607 0.421796 0.509799 0.580684 0.638337
hm ~Ref. @13#! 0.2976 0.4107 0.5068 0.5878
hm ~Ref. @18#! 0.2999 0.4137 0.5081 0.5862 0.6505

h 0.0258218 0.029917 0.031452 0.0315846 0.03096
h ~Ref. @13#! 0.0316 0.0373 0.0396 0.0367
h ~Ref. @18#! 0.0284 0.0335 0.0354 0.0355 0.0350
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They cannot compete with the five-loop calculation
@2–6,13,18#. However, our results are analytical, and alrea
close to the asymptotic limit although we made no assum
tion about the large-order behavior of the theory. We c
sider this as promising. In a subsequent publication, we
present a numerical calculation up to five loops, with larg
order behavior information included, of our self-consiste
formalism.

IV. CALCULATION OF AMPLITUDE FUNCTIONS
AND RATIOS

From now on, we shall focus entirely upon theD53-
dimensions model. As we mentioned in the introduction, i
only for the critical exponents that the minimal subtracti
scheme leads to the same resummed values both forD53
and D542e. For this reason, it made sense to study
e-expansions of the critical exponents, which was also us
for comparing with calculations in 42e dimensions. The
reason for this equality is the mass independence of
renormalization constants in this MS scheme. The mass
dependence implies a decomposition of the correlation fu
tions into amplitude functions and power parts, for which t
latter can be evaluated in the symmetric phase. The am
tude functions, however, depend on being in the ordered
disordered phase. Moreover, the situation is complicated
N.1 by the presence of Goldstone singularities, most
which have to be canceled at the end of the calculations: o
the physical singularities, for example, those occurring in
transverse susceptibilities, should stay at the end of the
culations.

For this reason, apart from the three-loop work@41#, no
three- or higher-loop calculation has been done forN.1
belowTc , even numerically. The only relatively easy case
N51 for which extensive numerical work has been do
below Tc up to five-loop order@21,25,40#. Above Tc , all N
can be treated in the same way@20,24,51#. In the latter ref-
erence the critical exponentsh andhm have even been ob
tained to seven loops, with resummation performed
@3,13,21,52#.
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We have explained in detail in the first part of this pap
that it is unnecessary to go to the renormalized theory si
all results can be obtained from the strong-coupling limit
the bare theory. In the literature, the effective potential
given in terms of the renormalized quantities@42,41,46#. To
apply our theory, we shall rewrite the expressions back in
bare form, using Eq.~14!.

A. Available expansions

Let us list the most important available amplitude fun
tions derived from the minimally renormalized model atD
53 at vanishing external magnetic fieldhB . Up to two
loops, they can be found in Ref.@46#: the square of the orde
parameterMB

25^fB
2& below Tc :

f f5
1

32pu
1F 1

27p
~160282N!1

2

p
~N21!ln 3Gu,

~85!

the stiffness of phase fluctuations belowTc ~some authors
call this helicity modulus@53#! Y:

f Y5
1

8u
1

1

3
1F 1

54
~23782683N!18~N23!ln 3Gu,

~86!

the q2 part of the transverse susceptibilityxT :

f xT
511

8

3
u1F488

3
24N2128 ln 3Gu2, ~87!

the specific heatC6 above and belowTc :

F152N22N~N12!u, ~88!

F25
1

2u
2418~102N!u, ~89!

the isotropic susceptibility aboveTc @55#
3-13
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f x1
512

92

27
~N12!u2, ~90!

the amplitude function of the susceptibility belowTc , which
we obtain taking the inverse of the two loop numerical e
pansion given~up to five loops! in @40#:

f x2
51118u1164.44u2. ~91!

The latter quantity is restricted toN51.
From the series expansion off xT

and f Y , one sees that the
relation

f Y54p f f f xT
~92!

is satisfied to two loops. This is not a surprise: the b
helicity modulus, defined asY52]GB /]q2uq50 whereGB is
the free energy, can be shown~at least to two loops@46#! to
be identical toMB

2(]xT
21/]q2)uq50. This is a consequence o

a Ward identity for the broken O(N)-symmetry belowTc .
In Ref. @42#, the perturbation expansions of the amplitu

functions for the order parameter and for the specific h
have been carried to three loops. The additional terms
~we use the notationf j5( i f j

( i )ui!:

f f
(3)52

1

1080p H 2500N2165 104N129 05618640~5N

122!z~3!158 320c1215p2~19N21643N1499!

2180~64N21640N1457!Li2S 2
1

3D280~194N2

11616N21675!ln 3116~860N218357N27867!ln 2

1270~N21!F28c2132Li2S 2
1

2D142Li2S 1

3D
264Li2~22!121~ ln 3!2116~ ln 2!2296~ ln 2!

3~ ln 3!G J , ~93!

F1
(3)524N~N12!S N2

7

27
14 ln

4

3D , ~94!

F2
(3)52

1

27
~1080N213464N131120!2128~5N122!z~3!

2864c11
2

3
p2~9N21N117!1216Li2S 2

1

3D
232~4N117!ln 31

32

3
~31N195!ln 2

14~N21!F28c2116Li2S 2
1

2D
16Li2S 1

3D232Li2~22!13~ ln 3!218~ ln 2!2

248~ ln 2!~ ln 3!G , ~95!
05611
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where Li2(x)5(n50
` xn/n2 is the dilogarithmic function@54#,

andc1 andc2 are two numerical constants given by a sing
variable integration over elementary functions@35,42#:

c15E
0

1 dx

A622x2 F ln
3

4
1 ln

31x

21x
1

x

21x

3S ln
31x

3
1

x

22x
ln

21x

4 D G
'0.021 737 576 333, ~96!

c25
p2

4A2
1A2E

0

1 dx

A11x2 F ln
x

11x
1

ln~11x!

x G
'0.973 771 427. ~97!

For completeness, we give in Appendix B some hints
how to obtain these amplitude functions. For the details,
Refs. @41,46#. Our own contribution concerns the suscep
bilities above and belowTc : Using the three-loop integral
available in the literature@42,35#, we have been able to ca
culate analytically the thee-loop extension of the amplitu
of the isotropic susceptibilityf x1

:

f x1

(3)52
8

27
~N12!~N18!

3F221112p21128 ln
3

4
1144Li2S 2

1

3D G , ~98!

as well as the three-loop amplitude function of the susce
bility below Tc , for N51:

f x2
51118u1

1480

9
u21F1072211 664c113p2

110 480 ln
4

3
136Li2S 2

1

3D Gu3. ~99!

Our analytical two-loop coefficient 1480/9 agrees with t
numerical coefficient given in Eq.~91!. We shall comment
on the three-loop one later. The details of the calculation
given in Appendixes C and D.

B. Amplitude ratios

Besides the amplitude functions, we shall also evalu
three important ratios: the amplitude ratio of the heat cap
ity, the universal combinationRC , and the amplitude ratio o
the susceptibilities forN51. For a review of amplitude ra
tios, see@56#. The relevant equations for their determinatio
is given in Appendix E. One of the best measured amplitu
ratios was mentioned in the introduction: it is the amplitu
ratio of the specific heat of superfluid helium above and
low Tc , corresponding toN52. It can, however, be define
for all N and, using our notation, can be written as@38,42#
3-14
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A1

A2
5S b1

b2D aS 4nB* 1aF1*

4nB* 1aF2*
D , ~100!

wherea andn are critical exponents andB* is the vacuum
renormalization group function associated with the addit
renormalization constant of the vacuum, evaluated at
critical point. It is known to five loops in the minimal sub
traction scheme@42,43# and reads, up to three loops,

uB5
N

2
u13N~N12!u3. ~101!

The ratio b1/b2 is equal to @41#: b1/b252nP1* /@(3/2)
22nP1* #, whereP1 is a polynomial inu, related to the scale
aboveTc . Its analytical derivation is given in Appendix
and reads, up to three loops,

P15122~N12!u14~N12!u21
8

27
~N12!

3F23~63N1572!124~N18!p214~43N1182!ln
3

4

1288~N18!Li2S 2
1

3D Gu3. ~102!

The experimental test for the validity of the strong-coupli
expansion is to match Eq.~100! with ~1! for N52. We shall
see in the next subsection if this can be done.

The ratioRC is defined by the universal combination
amplitudes@56# RC5G1A1/AM

2 whereG1 and AM are the
leading amplitudes of the isotropic susceptibility aboveTc
and of the order parameter belowTc , respectively. This ratio
has been written in Ref.@42# as

RC5
~2nP1* !222b

~3/222nP1* !22b

4nB* 1aF1*

16p

1

f f* f x1
*

. ~103!

All the quantities have been defined previously, but forb
which may be taken from the hyperscaling relationb
5n(D221h)/25n(11h)/2 in D53 dimensions. How-
ever, our own calculation forRC gives a correction to Eq
~103!:

RC5
~2nP1* !22n(D22)

~3/222nP1* !2n(D22)

4nB* 1aF1*

16p

1

f f* f x1
*

5
~2nP1* !222b

~3/222nP1* !22b S b1

b2D nh
4nB* 1aF1*

16p

1

f f* f x1
*

.

~104!

Since this disagrees with Eq.~103!, we give our derivation of
this result in Appendix E. We have verified that the nume
cal values coming from Eqs.~103! and~104! do agree within
1%. This is traced back to the small value of the exponenh.
05611
e
e

-

In the following we shall, however, consider Eq.~104!. We
hope than the analytical discrepancy between Eq.~103! and
~104! will soon be resolved.

The third ratio to be investigated is the amplitude ratio
the susceptibilities forN51. Such a ratio can also be define
for the longitudinal susceptibilities forN.1. This is a non-
trivial task requiring an appropriate description@57# due to
Goldstone singularities and this will not be investigated he
Using the notation of@40,55#, the amplitude ratio can be
written as

G1

G2
5

f x2
*

f x1
*

S j1

j2
D 2

5
f x2
*

f x1
* S b1

b2D 2n

, ~105!

where the ratiob1/b2 has been defined below Eq.~100!,
and where the quantities are restricted toN51.

The question arises now to calculate the amplitude fu
tions and ratios. As for the case of the critical exponents,
shall proceed also by order, starting with two loops.

C. Amplitude functions from two-loop expansions

In order to apply strong-coupling theory to the amplitu
functions ~85!–~88!, we must reexpand them in powers
the bare couplingūB using Eq.~14! up to two loops. The
strong-coupling limit is then given by the general express
~23!, with r2/4 given by Eq.~34! at e51.

We start consideringf f . To deal with a Taylor series, a
assumed in the general theory in Sec. III A, we consi
u ff :

u ff5
1

32p
1F 1

27p
~160282N!1

2

p
~N21!ln 3G ūB

2 .

~106!

This series is special because the linear term inūB , is absent:
the optimal value~23! is therefore given byûB* 50, and the
two-loop value ofu ff in the strong-coupling limit is the
same as the lowest-order value, which is independent ofN:

u* f f* 5
1

32p
. ~107!

It is worth pointing out here the effect of the special choi
for AD in Eq. ~8!. We mentioned there that this coefficie
did not have any influence upon the critical exponent. This
because the factorAD can be absorbed inuB to give ūB ,
implying the same strong-coupling limit. However, amp
tude functions areAD dependent. In particular, foru ff , the
chosen valueA351/(4p) has made the linear term disap
pear. One sees that this choice corresponds to an optima
tion: the zero order, the one-loop and the two-loop optim
values coincide. One expects then that the third-loop or
contributes only to a small deviation from it. This is indee
the case, as will be shown in the next section, and confi
previous expectations@38,41#.
3-15
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The same situation holds for the amplitude function~90!
of the susceptibility aboveTc . The linear term inu being
absent, the optimal value to two loops is independent oN
and is equal to

f x1
* 51. ~108!

The strong-coupling limit of the amplitude function of th
stiffness of phase fluctuations and of theq2-dependent par
of the transverse susceptibility can also be easily determi
The bare expansion is obtained combining Eqs.~86!, ~87!,
and ~14! to two loops:

u fY5
1

8
1

ūB

3
1F 1

54
~18022755N!18~N23!ln 3G ūB

2 ,

~109!

f xT
511

8

3
ūB2

4

3
~11N258196 ln 3!ūB

2 . ~110!

The corresponding optima are given by Eq.~23! with Eq.
~34! from which we obtain

u* f Y* 5
1

8
1

6~N2125N1106!

~N18!2@755N218022~432N21296!ln 3#
,

~111!

f xT
* 511

16~N2125N1106!

3~N18!2@11N258196 ln 3#
. ~112!

The result ~111! has a pole for N52(648 ln 3
2901)/(432 ln 32755)'1.349, indicating that the strong
coupling result is unreliable. We expect the pole to be
artifact of the limitation to two that disappears at the thre
loop level. Sincef Y is not known to three-loops, we can on
give plausible arguments for this expectation, suggested
the calculation ofu* (F2* 2F1* ) up to three loops in Eq
~136!, where a similar pole arises at the two-loop level b
disappears for three loops due to the interplay of the coe
cients of the loop expansion. The trouble with Eq.~111!
derives from the fact that the term of orderūB

2 in Eq. ~109!
changes sign for the mentioned value ofN'1.349, and at the
two-loop level nothing can compensate this. This is in co
trast with critical exponents that were observed to be al
nating series in powers ofūB . The result~112! for f xT

is

smooth for all positiveN. A more reliable result forf Y* than
the singular Eq.~111! can therefore be obtained by combi
ing Eq. ~107! with Eq. ~112! via relation~92!, leading to

f Y* 5 f xT
* /8. ~113!

Note that forN>4, far away from the pole, the two resul
~111! and ~113! agree within 2%.

It is worth pointing out that an evaluation of the reno
malized expression~87! at the critical pointu* given by eq.
~55! leads to a result compatible with Eq.~112! within less
that 1%. This is due to the fact that higher-order correction
05611
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the zero-order resultf xT
51 are small for allN. This is in

contrast tof f and f Y , where two-loop corrections are im
portant.

We now turn to the amplitude functionsF6 that enter the
heat capacity above and belowTc . At the two-loop level,
they are given by Eqs.~88! and ~89!, respectively. With the
relation between the renormalized and bare coupling c
stant~14! to two loops, we have the expansions

uF152NūB12N~N114!ūB
2 , ~114!

uF25
1

2
24ūB18~N126!ūB

2 . ~115!

With the help of Eqs.~23! and ~34!, we obtain

u* F1* 52
N

2

N2125N1106

~N18!2~N114!
, ~116!

u* F2* 5
1

2
22

N2125N1106

~N18!2~N126!
. ~117!

In @41,42#, uF1 was not a good candidate for Borel re
summation because itsu expansion~88! lacks alternating
signs of its coefficients. This problem is absent in variatio
perturbation theory since the expansion~114! in term of the
bare coupling constantūB does have alternating sign. Th
latter is then expected to lead to a reliable result~116!. This
will be confirmed by the three-loop result of the next sectio

To apply the usual Borel resummation at the level of t
renormalized quantities, Refs.@41,42# wrote the amplitude
ratio of the heat capacity as

A1

A2
5S b1

b2D aS 12a
F2* 2F1*

4nB* 1aF2*
D , ~118!

instead of Eq.~100!, and resummedu(F22F1) anduF2 ,
avoiding the direct resummation ofuF1 . For comparison,
we give below the optimal value of the differenceu(F2

2F1). It is determined from the expansions~88! and ~89!.
Using Eq.~14!, it yields

u~F22F1!5
1

2
1~N24!ūB22~N2110N2104!ūB

2 .

~119!

Its strong-coupling limit is, from Eqs.~23! and ~34!:

u* ~F2* 2F1* !5
1

2
1

~N24!2~N2125N1106!

2~N18!2~N2110N2104!
.

~120!

The latter expression diverges for a positive value ofN5
251A129'6.358. Then, the differenceu(F12F2) is not
the good quantity for the strong-coupling limit at the tw
loop level. We should rather evaluateuF1 and uF2 sepa-
rately in the amplitude ratio~100!, instead of using the
equivalent expression~118!. We shall see in the next sectio
3-16



he

su
q

he
n

o-

op
t
d

n.

in
ta
d

lin

r-
the
or.
he

p to
ng

he

ts

nt
el-
sign
rop-
the

act,

to

i

THREE-LOOP CRITICAL EXPONENTS, AMPLITUDE . . . PHYSICAL REVIEW E 63 056113
that the pole ofu* (F1* 2F2* ) is an artifact of the two-loop
calculation. A similar conclusion was also obtained for t
strong-coupling limit off Y , see Eqs.~111! and ~113!. For
N!4 and forN@251A129, the two-loop expansion~119!
is alternating, and we expect that the strong-coupling re
~120! is reliable. As an indication for this, we compare E
~120! with the difference of the optimizedu* F6* values
given in Eqs.~116! and ~117!:

u* DF6* 5
1

2
2

N2125N1106

~N18!2 S 2

N126
2

N

2~N114! D .

~121!

In Fig. 6, we compare the two curves~120! and ~121!.
As far as the amplitude ratio of the heat capacity~100!, or

Eq. ~118!, is concerned, we still need to determine t
strong-coupling limit of the renormalization group functio
B(u) of the vacuum~101! and of the polynomialP1 defined
in Eq. ~102!. Because there is no contribution of the tw
loop order to Eq.~101!, its strong-coupling limit is

u* B* 5u*
N

2
. ~122!

Since the optimal two-loop result is identical to the one-lo
result, it is clear that we may expect the large order limiL
→` to differ only little from N/2. This has been confirme
in the five-loop resummation performed in@41#, and will be
also seen in our three-loop calculation in the next sectio

The polynomialP1 given in Eq.~102! is evaluated in the
strong-coupling limit using the same lines. The starting po
is the expansion in powers of the bare coupling cons
given in Eq.~F4! of Appendix F. Its two-loop part combine
with Eqs.~23! and ~34! leads to

P1* 512
~N12!~N2125N1106!

~N18!2~2N117!
. ~123!

The last amplitude we shall calculate using strong-coup
theory isf x2

. From Eqs.~23! and~34! at N51, and from the
two-loop part of Eq.~D3!, we find, with Eqs.~23! and ~34!,

f x2
* 5119

r2

4

182

4532
5211/103. ~124!

FIG. 6. Comparison between the two-loop strong-coupling lim
of u* (F2* 2F1* ) andu* DF6* .
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Combining with the unit value~108! of f x1
* , we have a ratio

f x
2
* / f x

1
* identical to Eq.~124!. However, this ratio might as

well be determined as the strong-coupling limit of its pertu
bative expansion, instead of evaluating independently
strong-coupling limit of the numerator and the denominat
The relevant equation is given in Appendix D: Using t
two-loop expansion of Eq.~D6!, we have, with Eqs.~23! and
~34!,

S f x2

f x1

D *
511

r2

4

33182

1420
5

751

355
. ~125!

D. Amplitude functions from three-loop expansions

Some of the amplitude functions have been obtained u
the three-loop order. We now turn to their strong-coupli
limit. This is done by applying Eqs.~24!, ~25!, and ~64! to
the different amplitude expansions.

We start with the amplitude function of the square of t
order parameter. Combining the two-loop expansion~85!
with the three-loop termf f

(3) ~93!, and using also the relation
between the bare and renormalized coupling constant~14!,
we have the three-loop expansion

u ff5
1

32p
1F 1

27p
~160282N!1

2

p
~N21!ln 3G ūB

2

1H f f
(3)28~N18!F 1

27p
~160282N!

1
2

p
~N21!ln 3G J ūB

3 . ~126!

From this, we read off the expansion coefficien
f 0 , f 1 , f 2 , f 3 entering Eqs.~24!, ~25!, and~64!. Since the lin-
ear term f 1 vanishes, we have to follow the developme
below Eq.~26!, adapting it to the present case. This dev
opment was done assuming a series with alternating
since the expansions of the critical exponents had this p
erty. Here, this is no longer true. Consider once more
derivation of the strong-coupling limit following from the
optimal value off 5 f 01 f̄ 2ûB

21 f 3ûB
3 : ûB* (2 f̄ 213 f 3ûB* )50.

Two solutions are possible:ûB* 50 and ûB* 522 f̄ 2 /(3 f 3).
The latter was relevant for the critical exponenth. This does
not mean that the other solution has to be rejected. In f
looking at the nature of the extremum~minimum or maxi-
mum!, we see directly that the first solution corresponds

]2f

]ûB
2 U

ûB5û
B* 50

52 f̄ 2 , ~127!

while the other leads to

]2f

]ûB
2 U

ûB5û
B* 522 f̄ 2 /(3 f 3)

522 f̄ 2 . ~128!

t
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If one solution is a maximum, the other one is a minimu
Looking for the sign of f̄ 2 in Eq. ~126!, we see that it is
positive for N,Nf , with Nf5(80227 ln 3)/(41227 ln 3)
'4.439 92, corresponding to a maximum, and negative foN
greater, corresponding to a minimum. Variational pertur
tion theory at loop orderL.1 says nothing about the natu
of the extremum. It might be a minimum or a maximum.
quantum mechanics, this has been explained in the book@1#.
In quantum field theory, the exponenth illustrates this: we
had chosen the maximum@recall Eq.~75!#. In this way, the
e-expansion was obtained. Taking the solutionûB* 50, cor-
responding to the minimum, we would have obtained
three-loop result h50. The lack of reproducing the
e-expansion gives a hint that the maximum solution has to
chosen. In the case off f we can also argue that the max
mum solution has to be chosen, although here there is
e-expansion available, by definition of the model. Howev
at the point wheref 350, we have to recover an optimizatio
fo
ity
u
i.e
v
e
th

e

de

a

e

e

s
e
n
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problem of a quadratic equation inûB , see Eq.~126!. We
know for this function that, because no linear term is prese
the strong-coupling limit isu* f f51/(32p). This implies
that ûB* 50 at this point, i.e., that the maximum solution h
to be chosen. By continuity, this remains true in a neighb
hood. The nature of the solution can only be changed w
both solutions are equal, i.e., forN smaller than its valueNf

making f 2 vanish. BelowNf , we can imagine that we hav
an interchange of solutions, and that the minimum has to
chosen. In this case, we would haveu* f f* 51/(32p) for all
N. If we decide to keep the maximum for allN, which we
could prove to be true only forN>Nf , this would imply

that ûB* 522 f̄ 2 /(3 f 3) has to be chosen belowNf and ûB*

50 above. BelowNf we havef * 5 f 014 f̄ 2
3/(27f 3

2), as was
the case for the critical exponenth, while aboveNf , the
solution is f * 5 f 0. The strong-coupling limit off f to three
loops is then
u* f f* 5
1

32p
1

4

27
~2r21!3

@~160282N!/~27p!12~N21!~ ln 3!/p#3

$ f f
(3)28~N18!@~160282N!/~27p!12~N21!~ ln 3!/p#%2

QS 80227 ln 3

41227 ln 3
2ND ~129!
st
on-

m-
so-

ur

ed
-

with r given by Eq.~64!, and whereQ(x) is the step func-
tion of Heaviside, being equal to 1 forx.0 and being van-
ishing forx,0. As mentioned, we cannot be assured that
N,Nf the maximum has still to be chosen. The possibil
that the three-loop result is identical to the two-loop res
remains. Would the above analysis not be performed,
choosing the minimum solution everywhere, we would ha
obtained Eq.~129! without the step function, meaning th
presence of a pole at the vanishing of the coefficient of
cubic term in Eq.~126!, i.e., for N'4.929 15. We have
checked that the solution is sharply peaked near this valu
r

lt
.,

e

e

so

that it would appear that the optimal value is valid almo
everywhere. In fact, since the pole gives a very peaked c
tribution, a calculation at fixed integer value ofN would have
missed it completely, making one to believe that the resu
mation was correct. But this would not be true, the true
lution being Eq.~129! everywhere. We give in Fig. 7 the
comparison between our two- and three-loop results. O
values forN,Nf lie above the two-loop result 1/(32p) ob-
tained in Eq.~107!. This is also the case for the resumm
values given in@42# for N52,3 as can be seen in the follow
ing:
N 0 1 2 3 4 N.Nf5(80227 ln 3)/(41227 ln 3)

u* f f* ~2 loops! 1/(32p) 1/(32p) 1/(32p) 1/(32p) 1/(32p) 1/(32p)50.00994718
u* f f* ~3 loops! 0.0105523 0.0102518 0.0100884 0.00999735 0.00995195 1/(32p)

u* f f* ~Ref. @42#! 0.010099 0.00997
ant,
The agreement between our two- and three-loop or
and between our work and@42#, is excellent. It is due to the
fact that the term of order zero contains almost all inform
tion on this amplitude.

The three-loop amplitude functionsuF1 and uF2 are
given by Eqs.~88!, ~94!, ~89!, and~95!. As in the case of the
previous amplitudes, the present expansions may not b
ternating. This may make the argument of the parameterr in
Eq. ~24! positive, so that Eq.~24! has to be used to obtain th
strong-coupling limit rather than Eq.~25!. However, Eq.~25!
remains correct for allN for uF1 , while the alternating
property is lost foruF2 for N*40. Since the physical case
correspond toN50,1,2,3,4, we can ignore the alternativ
Eq. ~24! and Eq.~25! is used throughout. Using the relatio
r,

-

al-

~14! between the bare and renormalized coupling const
the three-loop bare extension of Eqs.~114! and ~115! are

uF152NūB12N~N114!ūB
21@F1

(3)224N~7N146!#ūB
3 ,

~130!

uF25
1

2
24ūB18~N126!ūB

21@F2
(3)2480~3N122!#ūB

3 .

~131!

This allows to identify the appropriatef 0 , f 1 , f 2 , f 3 functions
to enter Eq.~25!. In the strong-coupling limit, we obtain
3-18
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u* F1* 5
2N2~N114!r~r11!~2r21!

6@F1
(3)224N~7N146!#

1
2@2N~N114!#3~2r21!3

27@F1
(3)224N~7N146!#2

, ~132!

u* F2* 5
1

2
1

32~N126!r~r11!~2r21!

6@F2
(3)2480~3N122!#

1
2@8~N126!#3~2r21!3

27@F2
(3)2480~3N122!#2

, ~133!

with r from Eq. ~64!.
Figures 8 and 9 show the comparison between the two-loop results@~116! and ~117!# of the previous section and th

corresponding three-loop results@~132! and ~133!#, as well as a comparison with values given in@41#, when available.

To be more precise concerning the comparison with@41#, we give the appropriate values ofu* F2* :
N 0 1 2 3 4

u* F2* ~2 loops! 0.372596 0.379287 0.385714 0.391707 0.397222
u* F2* ~3 loops! 0.374166 0.378474 0.384065 0.389883 0.395484

u* F2* ~Ref. @41#! 0.3687 0.384 0.387
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From this, we see that that the strong-coupling limit
sults foru* F2

1 at the three-loop level differ only a little from
their two-loop counterpart. This was also see in Fig. 9 a
Fig. 8 for u* F1* . For N51, we can also infer from the tabl
that the results coming from variational perturbation the
and from a Borel resummation@41# are not in excellent
agreement, not even within the error-bars of the lat
u* F2* (N51)50.368760.0040. The agreement is, howeve
recovered for the valuesN52,3.

For u* F1* , there is no available comparison between o
work and others. The authors of@41# could not perform a
reliable Borel resummation, presumably because of the
of an alternating series. A comparison is, however, poss
for the differenceu* (F2* 2F1* ). We have seen in the prev
ous section that the two-loop evaluation of this difference
the strong-coupling limit did not work well in our case b
cause the second-order term in the bare expansion cha
sign for some value ofN. Let us see how the situatio
changes at the three-loop level, which has the expansion@see
Eqs.~130! and ~131!#

u~F22F1!5
1

2
1~N24!ūB22~N2110N2104!ūB

2

1@F2
(3)2F1

(3)124~7N2214N2440!#ūB
3 .

~134!

FIG. 7. Comparison between the two-loop~short-dashed! and
three-loop~solid! amplitude function of the order parameter. Th
resummed values@42# obtained using a Borel resummation are i
dicated by the dots for values ofN available.
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The coefficient of the second-order term vanishes forN
5251A129. This is not anymore a problem since there i
three-loop order term preventing a 1/f 2 behavior, see the
comparison between Eqs.~23! and ~25!. The coefficient of
the three-loop order can itself vanish. For Eq.~134!, this
happens forN[N̄'10.5324. Since Eqs.~24! and~25! imply
a behavior like 1/f 3, it is legitimate to wonder about poles
The answer is simple: if the coefficient of the three-loop te
vanishes, then the problem is formally equivalent to evalu
ing the strong-coupling limit of a two-loop series. The coe
ficient of the linear and quadratic terms are, however, diff
ent from the two-loop result since the linear term has a fac
r(r11)/2 instead ofr and the quadratic one a coefficie
(2r21) instead of a factor 1. We conclude that when t
three-loop term vanishes, the strong-coupling limit should
well behaved, giving a smooth curve aroundN̄. This discus-
sion shows that the functionr in Eq. ~24! is not always zero
here becauser contains the coefficientf 2 of the two-loop
term, and its zero governs the behavior of the solution~24!.
We note here the important following point: the positiv
square root1r was chosen in Eq.~24! in order to match a
vanishingf 3. We explained, and this was used when eva
atingh, that the negative root might play a role as well. F
h to three-loop order, we had a negativer. Let us see what
happens forf 250. The expansion to be optimized isf 5 f 0

1 f̄ 1ûB1 f 3ûB
3 , such that we have to solvef̄ 113 f 3(ûB* )2

FIG. 8. Comparison between the strong-coupling limit of t
two-loop ~shot-dashed! and three-loop amplitude function~solid!
u* F1* .
3-19
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50. For the critical exponents, the signs off̄ 1 and f 3 are the
same because the series are alternating. For this reason
equation has no real solution, and we must solve the turn
point equation 6f 3ûB* 50, which is ûB* 50, leading to the
optimized resultf * 5 f 0. For the amplitude functions, w
have already seen that the alternating property is not ne
sarily true, so that the solutionûB

252 f̄ 1 /(3 f 3) is real. At the
point wheref 2 vanishes, we can see that the optimal value

f * 5 f 06
2

3
f̄ 1A2

2 f̄ 1

3 f 3
~135!

the positive or negative sign being chosen to get a contin
of the solution aroundf 2.

For the difference functionu(F22F1), it is possible to
follow exactly the strong-coupling limit as a function ofN.
Depending onN, there are four different solutions: belo
N̄1'2.485 27 and aboveN̄3'16.6066, the argument of th
square root ofr is negative, and one uses Eq.~25!. For N

P@N̄2 ,N̄3@ , one uses Eq.~24! with the positive root (r
5ur u), where N̄35251A129'6.357 82 is the value ofN

FIG. 9. Comparison between the strong-coupling limit of t
two-loop ~shot-dashed! and three-loop amplitude function~solid!
u* F2* . The resummed values@42# obtained using a Borel resum
mation are indicated by the dots for values ofN available.
e
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for which f 2 changes sign. The zero off 3 lies within the
same region. Finally, the last region is within the rangeN

P] N̄1 ,N̄2], for which we use Eq.~24!, but with the negative
root r 52ur u. More precisely,

u* ~F2* 2F1* !

5
1

2
1

2~N24!~N2110N2104!r~r11!~2r21!

6@F2
(3)2F1

(3)124~7N2214N2440!#

3S 12
2

3
r D

2
2@2~N2110N2104!#3~2r21!3

27@F2
(3)2F1

(3)124~7N2214N2440!#2
~12r !,

~136!

with r 50 for N&N̄1 andN*N̄3, andr the negative or posi-
tive square root of

FIG. 10. Comparison between the strong-coupling limit of t
two-loop ~shot-dashed! and three-loop amplitude function~solid!
u* DF6* 5u* F2* 2u* F1* . The three-loop~long-dashed! evaluation
of u* (F2* 2F1* ) is in better agreement with the resummed valu
~dots! obtained in@42# using a five-loop (N51) or three-loop (N
Þ0) Borel resummation.
r 25123
~N24!@F2

(3)2F1
(3)124~7N2214N2440!#r~r11!

2@2~N2110N2104!#2~2r21!2
~137!
ce
.
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for NP] N̄1 ,N̄2] or NP@N̄2 ,N̄3@ , respectively.
Thus, the pole inN of the two-loop approximation to

u* (F2* 2F1* ) was only an artifact of the low order. At th
three-loop level, the singularity is avoided by the interpl
between the different possible solutions of Eq.~24! arising
from the different branches ofr: r 50,6ur u, with ur u to be
identified with the functionr defined below Eq.~24!. This
possibility was not exploited in previous works@2,5# because
of the alternating signs for the critical exponents.@See, how-
ever,h that requiredr 521 for the strong-coupling limit of
Eq. ~74!.#
In Fig. 10, we show the strong-coupling limit ofu* (F2*
2F1* ). For comparison, we also give the direct differen
u* DF6* betweenu* F2* and u* F1* , as obtained from Eqs
~133! and ~132!, as well as its two-loop counterpart~121!.
The range forN has been increased to 30 in order to inve
tigate the regions delimited byN̄1 , N̄2, andN̄3.

For the direct difference, the changes brought about
the three-loop is very small, as before in Figs. 8 and 9. T
difference betweenu* (F2* 2F1* ) and u* DF6* is, however,
somewhat larger. To facilitate the comparison, the followi
should be of help:
3-20
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N 0 1 2 3 4

u* DF6* ~2 loops! 0.372596 0.433608 0.485714 0.530258 0.568519

u* DF6* ~3 loops! 0.374166 0.432926 0.484899 0.530224 0.569615

u* (F2* 2F1* ) ~3 loops! 0.374166 0.421864 0.461436 0.489995 1/2

u* (F2* 2F1* ) ~Ref. @41#! 0.4179 0.461 0.498
rm
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The simple value 1/2 for the caseN54 comes from Eqs.
~136! and~137!: for N54, r is vanishing, meaning the third
term of Eq.~136! does not contribute. Since the second te
is also proportional toN24, only the zero-loop order sur
vives for the Higgs case. Our results foru* (F2* 2F1* ) are in
good agreement with the Borel results of Ref.@41#. This is
probably not a coincidence since we now resum the sa
function as they did. We note, however, that for the Isi
model (N51), we are not within the error bars of@41#. We
have already noted this for the strong-coupling limit
u* F2* .

Before closing the investigation ofu(F22F1), we recall
the case off Y , whose direct two-loop strong-coupling lim
gave Eq. ~111!, exhibiting a pole. We know the strong
coupling limit should not have been far fromf xT

* /8, see the

discussion leading to Eq.~113!. We have shown in this sec
tion how a pole inu* (F2* 2F1* ) at the two-loop level might
disappear at the three-loop one. This is probably the case
f Y . It would be very useful to get its three-loop order.

We can now turn to the strong-coupling limit of the reno
malization group constant of the vacuumB(u). Its three-loop
value has been given in Eq.~101!.

Upon inserting the relation between the renormalized
the bare coupling constant~14!, we obtain
he

o

d

05611
e

for

d

uB~u!5
N

2
ūB22N~N18!ūB

21N~8N21167N1686!ūB
3 .

~138!

The series is alternating and behaves as for the critical ex
nents. No subtleties arise here as in the case off f and
u* (F2* 2F1* ). In particular, the argument of the square ro
of r in Eq. ~24! is negative for allN and we have to work
with Eq. ~25!. Using Eq.~25!, the strong-coupling limit is

u* B* 5
N~N18!r~r11!~2r21!

6~8N21167N1686!

2
16N~N18!3~2r21!3

27~8N21167N1686!2
. ~139!

This result is plotted in Fig. 11 together with the two-loo
result u* N/2, see Eq.~122!. We also indicate the approxi
mate resultu* B* 5u* N/2 with u* from the three-loop ex-
pansion~84!. There is no visible difference between the latt
and Eq.~139!.

To facilitate the comparison between the different a
proximations, we recapitulate the numerical results:
N 0 1 2 3 4

u* B* ~2 loops! 0 0.0226337 0.04 0.0535312 0.0642361

u* B* ~3 loops! 0 0.0221074 0.0391089 0.0523643 0.0628447

u* B* 5u(3)* N/2 0 0.0219975 0.0388885 0.0520441 0.0624386

u* B* ~Ref. @41#! 0 0.020297 0.0363919 0.049312
g-

he

di-
FIG. 11. Comparison between the strong-coupling limit of t
two-loop ~short-dashed! and three-loop~solid! renormalization
group constant of the vacuumu* B* . For completeness, we als
give the approximate three-loop~long-dashed! result u(3)* N/2. A
five-loop calculation@41# using Borel resummation is include
~dots! for values ofN available.
For the comparison with@41#, we have multiplied their
five-loop results forB* with their five-loopu* . These five-
loop results are within 7% from our three-loop stron
coupling calculation. This confirms thatB* 'N/2 to all or-

FIG. 12. Comparison between the strong-coupling limit of t
two-loop ~short-dashed! and three-loop~solid! polynomialP1* . The
values@42# obtained using a five-loop Borel resummation are in
cated by the dots for values ofN available.
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ders. We shall, however, see in the next section that this
difference leads to a non-negligible difference in the univ
sal combinationRC .

The next quantity we shall resum to three loops is
polynomialP1 . The three-loop bare expansion of the ren
05611
%
-

e
-

malized P1 was given in Eq.~F4! and resummed to two
loops in Eq.~123!. The series in the bare coupling constant
alternating, and behaves as for the critical exponents.
strong-coupling limit of P1* to three loops is then
given by
-

mation

five-loop

he
olution

mmed
se of

going to
, we also
P1* 511
9

2

~N12!~2N117!r~r11!~2r21!

@23~36N21837N13920!124~N18!p214~43N1182!ln~3/4!1288~N18!Li2~21/3!#

154
~N12!~2N117!3~2r21!3

@23~36N21837N13920!124~N18!p214~43N1182!ln~3/4!1288~N18!Li2~21/3!#2
, ~140!

with r from Eq. ~64!.
In Fig. 12, we compare Eq.~140! with the two-loop result from Eq.~123!. Almost no difference is found between our two

and three-loop expansions.

For a better comparison, we quote the numerical values forN50,1,2,3,4:
N 0 1 2 3 4

P1* ~2 loops! 0.805147 0.74269 0.695238 0.658642 0.63
P1* ~3 loops! 0.807683 0.745874 0.698901 0.662717 0.63447

P1* ~Ref. @41#! 0.7568 0.7091 0.6709

The two- and three-loop results agree within 1%. The results agree fairly well with the five-loop Borel resum
performed in@41#. We shall, however, see later that amplitude ratios depend crucially on the exact value ofP1* . For this
reason, our three-loop calculation is probably not precise enough. We shall present in the last section a numerical
strong-coupling evaluation ofP1* to more firmly settle this statement.

To conclude this section, we discuss the amplitude of the susceptibilities above and belowTc to three loops. We already
know from the previous section that the two-loop amplitude aboveTc is identical to the order zero:f x1

* 51, see Eq.~108!. As

for the case ofu ff , we then expect a very small deviation from the zero-order value as well as a very smoothN dependence.
The series to evaluate in the strong-coupling limit is given in Eq.~C9!. It is alternating and behaves like the series of t
critical exponents. Moreover, with a vanishing linear term, but with a negative coefficient of the quadratic term, the s
of the optimalization problem is at variance with the case of the exponenth or the amplitudef f if, as for these quantities, we
admit that the solution is a maximum. From Eq.~127!, we determine that the optimal value isûB* 50, so that

f x1
* 51 ~141!

remains true at the three-loop level: The amplitude of the susceptibility aboveTc at the three-loop level does not depend onN.
This is in contrast to@55#, where aN-dependent fit, using Borel resummation, has been performed. Because our resu
value up to three loops isf x1

51, it is tempting to conjecture that this is true for all orders. However, contrary to the ca

h and f f , we have here no argument to tell that the maximum has to be chosen instead of the minimum. Only when
higher orders, then having more expansion coefficients, can we decide which solution is the right one. For this reason
mention below the other solution, which differs from unity for at most 2.5%:

f x1
* 512

48 668~N12!3~2r21!3

@27~N12!~N18!#2@2113112p21128 ln~3/4!1144Li2~21/3!#2
. ~142!

The comparison between the two curves is given in Fig. 13, as well as a comparison with the fit

f x1
51292~N12!u2~11bx1

u!/27 ~143!

taken from Table 1 of@55#, with bx59.68(N51),11.3 (N52), and 12.9 (N53), combined with the five-loopu* of Ref.
@41#. More precisely, we have
3-22
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N 0 1 2 3 4

f x1
* ~2 loops! 1 1 1 1 1

f x1
* ~3 loops! from ~141! 1 1 1 1 1

f x1
* ~3 loops! from ~142! 0.979543 0.976298 0.975082 0.974977 0.975472

f x1
* ~Refs.@41,55#! 0.976791 0.9748331 0.9740978

The fact that our three-loop calculation~142! agrees very well with Refs.@41,55# might be an indication that Eq.~142!
should be preferable to Eq.~141!. However, from a variational perturbation theory point of view, nothing can be said. Onl
determination of the next order might resolve the ambiguity.

Finally, we determine the strong-coupling limit of the amplitude of the susceptibility belowTc for N51. We have checked
that the parameterr in Eq. ~24! is zero, i.e., we have to work with the turning-point equation~25!. Applying it to Eq.~D4!, we
have

f x2
* 511

4352r~r11!~2r21!

3@19 904211 664c113p2110 480 ln~4/3!136Li2~21/3!#

2
164 852 924 416~2r21!2

19 683@19 904211 664c113p2110 480 ln~4/3!136Li2~21/3!#2
, ~144!

with r from Eq. ~64!. Numerically, this is evaluated asf x2
* '2.09387, to be compared with the two-loop result~124!

211/103'2.048 544. They agree within 3%.
For the ratio~105!, the calculation off x2

/ f x1
is needed. Its strong-coupling limit can be determined using the individ

strong-coupling limit of the numerator and the denominator. In that case, the ambiguity onf x2
* at the three-loop level is

relevant. According to the choicef x1
* 51 from Eq.~141! or f x1

* '0.976 298 from Eq.~142! with N51, we have

f x2
*

f x1
*

52.093 87, ~145!

f x2
*

f x1
*

52.1447, ~146!

respectively.
The strong-coupling limit of the ratiof x2

/ f x1
can also be computed from its perturbative expansion. It has been de

in Appendix D, see Eq.~D6!. The strong-coupling limit reads

S f x2

f x1

D *
511

1420r~r11!~2r21!

3@19 184211 664c1199p219456 ln~4/3!11188Li2~21/3!#

2
5 726 576 000~2r21!2

729@19 184211 664c1199p219456 ln~4/3!11188Li2~21/3!#2
. ~147!
th
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Its numerical value is 2.112 27, to be compared with
two-loop result ~125! 751/355'2.115 49. The three-loop
level is in very good agreement with the two-loop resu
within less than 0.2%. However, this by no means sign
that the asymptotic limit has been reached, and the ra
~145! or ~146! might be closer to the true ratio than E
~147!. This is due to the fact that the even and odd orders
on different converging lines because odd~even! terms come
from an extremum~turning-point! condition or vice versa.
To see the speed of convergence, it would be necessa
05611
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,
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to

compare the four-loop order with the two-loop order, and
five-loop order with the three-loop order.

E. Amplitude ratios from two- and three-loop expansions

We have now everything in hand in order to compute
ratio of the heat capacityA1/A2, the universal combination
RC , and the ratio of the susceptibilitiesG1 /G2 . This sec-
tion is restricted to a full two- and three-loop calculation.
order to improve the ratios, we shall break our rule of be
3-23
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self-consistent in the next section and use there the m
mum information available.

We start with the heat capacityA1/A2. Since we have a
preference for Eq.~100! over Eq.~118!, we shall work with
the separate strong-coupling limit evaluation ofu* F2* and

FIG. 13. Comparison between the two-loop strong-coupl
limit ~short-dashed! of the amplitudef x1

* of the susceptibility above
Tc and the second possible solution~142! at the three-loop leve
~solid!. The values@55# obtained using a five-loop Borel resumm
tion ~dots! are given for values ofN available.
1
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c
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u* F1* . We have checked that the effect on the ratioA1 /A2

is negligible. The exponenta entering it is calculated from
the two- or three-loop result forn given in Eq.~52! and Eq.
~81!, respectively, using the hyperscaling relationa52
2Dn.

Combining the different results derived previously, w
have

N 0 1 2 3 4

A1 /A2 ~2 loops! 0 0.489106 0.843065 1.12691 1.3701
A1 /A2 ~3 loops! 0 0.491088 0.862 439 1.16719 1.4324

.
Regarding the fact that the critical exponenta is far away

from its asymptotic limit~it is still positive for N52, while
the shuttle experiment@28# shows clearly a negative value!,
the results of this table are promising: ForN52, we obtain
A1 /A2'0.862439 at the three-loop level, while the shut
experiment@28# gives A1 /A2'1.0442, see Eq.~1!. We
shall see in the next section that working with asympto
critical exponents leads to a better agreement with exp
ments.

The next ratio we examine is Eq.~104!, the universal
combinationRC . The results are best displayed as

g

N 0 1 2 3 4

RC ~2 loops! 0 0.062474 0.124819 0.184355 0.239967
RC ~3 loops, f x1

* 51) 0 0.05944 0.121628 0.182413 0.239691
RC ~3 loops, f x* from ~142!! 0 0.060883 0.124736 0.187094 0.245718
r,
po-

at-

lly
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the
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g
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ult
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We see an overall agreement between the two- and th
loop results. We have also checked that the ratioRC calcu-
lated with the formula~103! used in@42# is within less than
1%. Moreover, our results are in agreement with the val
RC(N52)50.123 andRC(N53)50.189 given in Ref.@42#.
Since we expect that using the true critical exponent w
lead to a better ratioA1 /A2 , it is important to see howRC
evolves. Will the agreement with@42# be lost? This issue is
investigated in the next section.

To end this section, we study the ratio of the susceptib
ties G1 /G2 for the Ising model, see Eq.~105!.

The two-loop result for the amplitude ratio~105! is, with
n556/90 from Eq.~52!, with P1* 5127/171 from Eq.~123!
and with f x1

* 51:

G1

G2
5

211

103S 4nP1*

324nP1*
D 2n

5
211

103S 14 224

8861 D 56/45

'3.691 71.

~148!

This is still far from the value'4.7 quoted in the literature
@18,56#. A small improvement is obtained using the dire
strong-coupling evaluation off x2

/ f x1
of Eq. ~125!:

G1

G2
5

751

355S 4nP1*

324nP1*
D 2n

5
751

355S 14 224

8861 D 56/45

'3.812 36.

~149!
e-

s
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This value is still far from the expected ratio 4.7. Howeve
the ratio depends sensibly on the value of the critical ex
nentn. For example, usingn50.63, we increase Eq.~149! to
G1 /G254.002. The sensibility is also seen when calcul
ing the three-loop value of the ratio:

G1

G2
'3.887 85, ~150!

where the ratio (f x2
/ f x1

)* has been obtained from~147!.

F. Amplitude ratios using maximum information

Up to now, we have followed the strategy to make a fu
consistent two- and three-loop calculation. The compari
between the two- and three-loop amplitude functions
made us believe that the resummed values are close to
extrapolated limitL→`, although one has to take care th
odd and even approximations are on different converg
lines. For the critical exponents, it is primordial going to t
asymptotic limit. For example, we havea(N52) still posi-
tive at the three-loop level, while the shuttle experiment,
second reference of@28# and Eq. ~1!, shows a value of
a(N52)520.010 56.

In this section, we shall relax our constrain of workin
only with two- and three-loop quantities and will take th
maximum available information, i.e., our three-loop res
for the amplitudes and extrapolated, or experimental, va
3-24



o

i-

li-
ob

4

oo
to

,
en

-

v
ia
e

el

it
in

o-

and

the

-

e to

l-
n,
d

een

t
the

g

or
ve-

THREE-LOOP CRITICAL EXPONENTS, AMPLITUDE . . . PHYSICAL REVIEW E 63 056113
for the critical exponents. We shall also see the effect
usinguB to five loops.

Except fora(N52) that we took from the shuttle exper
ment @28#, the exponents are taken from theD53 tables of
@18#, i.e., we are working with, forN50,1,2,3,4:

n50.5882 0.6304 0.6703 0.7073 0.741

a50.235 0.109 20.010 56 20.122 20.223.
~151!

Combining the three-loop strong-coupling limit of the amp
tudes performed in Sec. IV D with these exponents, we
tain, for A1 /A2 ,

N 0 1 2 3 4

A1 /A2 0 0.543406 1.04516 1.54386 2.044
A1 /A2 ~Ref. @41#! 0 0.540 1.056 1.51

We have checked that the increase from the three-l
value ~for N52, this ratio was 0.862 439) is mainly due
using the correcta. For example, with the correcta but still
using the three-loopn of Eq. ~81!, we would have obtained
for N52, a ratio 1.047 11. It also does not depend too s
sitively on using the five-loop strong-coupling limit ofu* B*
andP1* , neither on usingu* (F2* 2F1* ) instead of the sepa
rate calculation ofu* F2* and u* F1* . For example, playing
with all these quantities, the ratio, forN52, could be
changed from A1 /A251.045 16 to, at most,A1 /A2

51.049, depending on which quantities are taken to fi
loops. A complete numerical study of this ratio, using var
tional perturbation theory up to five loops, will be present
elsewhere@58#.

For N52, our result 1.045 16 coincides remarkably w
with the shuttle experiment, see second reference of@28#. For
N51, we have 0.543 406, which agrees reasonably well w
Ref. @25# (A1 /A2'0.541) and with the values quoted
re
.
a

e

05611
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Table 5 of@18#, values that are both experimental and the
retical. In Ref.@41#, the authors obtained 1.056 forN52.
Their Table 4 makes a comparison between their result
other works and experiments, forN51,2,3. We see that the
agreement is good. In our table, we have listed only
values calculated in the work@41# since the model is the
same.

For the universal combinationRC , we obtain, using the
five-loop critical exponents~151! and the three-loop ampli
tudes of Sec. IV D

RC50, 0.061 625 7, 0.130 341, 0.201 404, 0.270 882
~152!

for N50,1,2,3,4.
Here also, we have checked that the main effect is du

choosing the correcta. Working with n at the three-loop
level only modifies the result slightly. While working with
the true exponents for the ratioA1 /A2 had considerably
improved it, making it coincide with the experimental va
ues, we see forRC that the values of the previous sectio
with a wrong a were in better agreement with the quote
values in @42#: RC50.123,0.189 forN52,3, respectively.
We have checked that our result forN52 is not changed if
we take the values ofa andn taken in@42#. Also, the result
does not depend sensibly onu* F1* , although our value dif-
fers from theirs. We have traced back the difference betw
our result and@41# to uB at the critical point: limiting our-
selves toN52, we haveu* B* '0.039 108 9 while@41#
gives a valueu* B* '0.036 391 9. This difference is all tha
is needed to explain the difference between our result and
result of Ref.@42#, apart from a very small difference comin
also from our use of Eq.~104! instead of Eq.~103!. Since
u* B* has been obtained in@41# using a five-loop Borel re-
summation, it is tempting to believe it is more accurate. F
this reason, we have also determined numerically the fi
loop strong-coupling limit ofuB. We shall show a detailed
numerical resummation in@58#, showing here only the main
steps. Starting from the five-loop expansion@41,43#
uB~u!5
N

2
u1

N~N12!

48
u31

N~N12!~N18!@225112z~3!#

648
u41N~N12!

3
@2319N2113 968N164864116~3N22382N21700!z~3!196~4N2139N1146!z~4!21024~5N122!z~5!#

41472
u5,

~153!

and using the algorithm given by Eq.~17!, the corresponding strong-coupling limit is

N 0 1 2 3 4

u* B* ~5 loops! 0 0.0209552 0.0372717 0.0502225 0.0605918
u* B* ~Ref. @41#! 0 0.020297 0.0363919 0.049312
of
Our five-loop result is now much nearer to the Borel
summed values of@41# than our three-loop order of Sec
IV D. For this reason, we believe our five-loop result is ne
the infinite-loop limit extrapolation. More details will b
-

r

given in @58#, which also contains the effect of variations
P1* , which is the second source, afteru* B* , of error for
RC .

Finally, our best values for the ratioRC are collected
3-25
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N 0 1 2 3 4

RC 0 0.05803 0.12428 0.19402 0.2628
RC ~Ref. @41#! 0 0.123 0.189

To our knowledge no experimental value of this ratio
known forN52. The caseN53 is presented in Table 7.6 o
Ref. @56#. For N51, the value of the ratio has only slightl
changed compared to the results based on three-loopa and
n. This is due to the fact that, forN51, a is positive and its
effect onRC is less sensitive. In the work@18#, the theoreti-
cal and experimental values ofRC are also given forN51.
The theoretical values seem to prefer a value around 0
while the experimental values are around 0.050. From Ta
7.1 of @56# we, however, see that values close to 0.06 mi
as well be obtained. A result (RC'0.0594) close to this
latter value was also obtained theoretically in@25#.

Better experiments or other theoretical studies are nee
in order to see if our predictions are correct or have to
ruled out.

Finally, we conclude this section with the ratio of th
susceptibilities for the Ising model. Using the critical exp
nentn to five loops Eq.~151!, we obtain

G1 /G254.06419, ~154!

where we took the ratio (f x2
/ f x1

)* from Eq. ~147!. We

might have slightly increasedG1 /G2 using the value 2.1447
of Eq. ~146!. However, we would still be far from the valu
4.77 of @18#, the value confirmed in the work@25#. The only
possible quantity we may still vary in the ratio~105! is P1* .
Our three-loop value is 0.745 874, while the five-loop res
given in @41# using Borel resummation is 0.7568. Using th
value in our formula for the ratio, we find

G1 /G254.271 54. ~155!

The ratio of the susceptibilities depends sensitively onP1* .
We postpone to@58# the application of variational perturba
tion theory up to five loops for the resummation ofP1* and
G1 /G2 . We do not, however, expect a resummedP1* dif-
ferent from@41#. For this reason, the ratio~155! is probably
the best we can obtain. A ratio of 4.77 obtained in@18# and
references therein seem to be ruled out from our analys

V. CONCLUSION

In this paper, we have shown that variational stron
coupling theory@2,5# can be applied not only to critical ex
ponents, but also to various amplitude ratios. We have
cused on two- and three-loop results were analytical res
for the amplitude functions are known@41,42,46# for all N
both above and belowTc . Our results are analytical expre
sions, except in the last section where we used more in
mation to find A1 /A2 ,RC and G1 /G2 . The results are
quite sensitive to the precise value of the critical expone
In addition, a five-loop evaluation of the renormalizatio
constantB* was necessary. The ratioRC was so sensitive to
it that a three-loop calculation was not sufficient. The sa
remark holds forP1* , which affects mainlyG1 /G2 . A nu-
05611
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merical study of the known five-loop amplitudes will b
done in@58#, which will contain refined results compared
Sec. IV F.

One interesting observation of our work is that we c
evaluate series that have caused problems in previous B
resummations when the expansion coefficients in terms
the renormalized coupling constant are not alternating to
orders. For these functions, the strong-coupling theory tur
out to work well.

Having obtained analytical expressions inN, we have
shown that the coefficient of the series in the bare coup
constant may vanish and change sign. At the two-loop le
this lead to diverging results near certain value ofN. We
have seen that the problem disappears at the three-loop l
because of the interplay of the different coefficients of t
series. We could show precisely how it works because all
results were analytical and not restricted to integer value
N.

When using variational perturbation theory, nothing
known of the nature of the optimal variational paramet
which can be a minimum, a maximum, or a turning poi
The analysis performed here should help to identify the c
rect ~numerical! solution at higher-loop order. See for ex
ample the amplitudef x1

* , for which it is not yet clear which

of the solutions~141! or ~142! has to be chosen.
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APPENDIX A: EXPONENT v FROM STRONG-COUPLING
THEORY

The powerp/q of the leading power behaviorūB
p/q of a

functionWL whose perturbative expansion has been given
Eq. ~20! can be obtained taking the logarithmic derivativ
giving Eq. ~21!. A subtlety arises for functions going to
constant in the strong-coupling limit. For such functionsp
vanishes and the correspondingf * in Eq. ~17! vanishes. Care
has to be taken: the limitf * →0 is different from imposing
f * 50. In the former case, we can identifyq ~or v) by
matching the series to achievef * 50. Working directly with
a series that hasf * 50 implies a leading behaviorp8/q5
2v/e. The algorithm~17! serves then to identify the coef
ficient c0 of the rhs of Eq.~18!. As an example of how to use
the series, let us derive the relation@2,5,13#

2
v

e
215

d ln WL8

d ln ūB

. ~A1!

The left-hand side is of the type of Eq.~18!, and the algo-
rithm ~17! can be applied. Formula~A1! follows directly
3-26
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from Eq. ~18!. Alternative derivation starts from Eq.~21!: If
p/q is vanishing, this means that its series has a lead
exponentp8/q52v/e, which we derive in the following
manner. Start from formula~21! with its exponentp8/q that
we know from the general behavior~18! with f * [p/q50,
i.e.,

p8

q
52

v

e
5

d ln~p/q!

d ln ūB

~A2!

wherep/q is not yet taken at its asymptotic zero value, bu
given as the right-hand-side of Eq.~21!. It then follows

2
v

e
511ūBS WL9

WL8
2

WL8

WL
D 511ūB

WL9

WL8
2

p

q
. ~A3!

Taking the limit ūB→`, the termp/q vanishes by hypoth-
esis, and we end up once more with formula~A1!.

Although the algorithm~17! cannot be applied directly fo
the right-hand side of Eq.~21! if p/q is vanishing exactly but
only in the limit p/q→0, we can, nevertheless, use a trick
circumvent this problem: If the series forWL has a vanishing
leading powerp/q, then WL /ūB has a powerp8/q521.
This allows us to deduce

p8

q
[215

d ln~WL /ūB!

d ln ūB

5ūB

WL8

WL
215

p

q
21. ~A4!

This shows that the right-hand-side of Eq.~21! can be used
to reach the limit 0. Then,v can be extracted either from Eq
~21! or from Eq. ~A1!. It is also clear from the expressio
~A3! that the right-hand-side has to be resummed blockw
we have to use the intermediate resultp/q50 before tempt-
ing to resum. Using a full resummation of the right-han
side of the latter equation would lead to badly resumm
results~although the underlyinge expansion would be the
same!: It is necessary to usep/q50 in Eq. ~A3!, and not its
analytical form that would have been mixed up with t
power series ofWL9 /WL8 .

APPENDIX B: FREE ENERGY TO THREE LOOPS

From the model Hamiltonian~4!, the analytical calcula-
tion of the Gibbs free energyGB(m8B

2 ,uB ,MB) near the co-
existence curve belowTc and for MB

2[^fB
2&50 aboveTc

has been obtained at the two-loop order in@46# and at the
three-loop order in@41#, thus extending theN51 calculation
of Rajantie@35#. We write directly the three-loop result:

GB5
1

2
m8B

2MB
21uBMB

21 (
b51

3

(
l 50

b21

(
k50

1

3~21!k22 l 2kFblk~v̄,N!

3~24uB!32 l~MB
2 ! lF r 0L

~24uB!2G (42b22l )/2

lnF r 0L

~24uB!2G k

,

~B1!
05611
g

e:

-
d

wherer 0L5m8B
2112uBMB

2 is the longitudinal bare mass, th
transverse oner 0T5m8B

214uBMB
2 being included in the pa-

rameter v̄5r 0T /r 0L . The nonanalyticity in the coupling
constant is seen in the last term.

The functionsFblk can be found in@41,46#. Since we need
them later on in this Appendix, we shall write the nonze
components:

F10052
1

12p
@11~N21!w̄3/2#, ~B2!

F2005
1

384p2
@312~N21!w̄1/21~N221!w̄#, ~B3!

F2105
1

288p2
~N21!ln

112w̄1/2

3
, ~B4!

F21152
1

288p2
~N12!. ~B5!

F3005
1

18 432p3 S 15124 ln 3
4 2~N21!H w̄21/212N26

18 ln
212w̄1/2

3
1w̄1/2FN226N2914~N11!ln

16w̄

9

18 ln
212w̄1/2

3 G1w̄~N21!J D , ~B6!

F3015
1

2304p3
$31~N21!@11~N12!w̄1/2#%, ~B7!

F3105
1

27 648p3
„9p22181108Li2~2 1

3 !2~N21!$4w̄21/2

14N122~N12!p2212Li2~ 1
3 !232 ln 226~ ln 3!2

1w̄1/2@10N132216~2N13!ln 2148 ln 3

28~N11!ln w̄#1 1
3 w̄~84N21002128 ln 2!%…, ~B8!

F3205
1

165 888p3
F432 ln4

3 2324Li2~2 1
3 !2432c1227p2

2~N21!X16w̄21/21
3N114

3
p2118~ ln 3!2

136Li2~ 1
3 !116@c214Li2~22!22Li2~2 1

2 !

1~6 ln 32 ln 22 13
3 !ln 2#2 128

3 116w̄1/2@72N1~N

11!ln~16w̄!12 ln 226 ln 3#14w̄$4c2212N2 224
5

1p216~6 ln 32 ln 22 16
15 !ln 2112@2Li2~22!2Li2

~2 1
2 !#%CG, ~B9!
3-27
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where, in the coefficientsF310 andF320 below Tc , terms of
orderO(w̄3/2,w̄3/2 ln w̄) have been neglected~the coefficients
are calculated in the vicinity of the coexistence curve wh
an expansion with respect tow̄ is justified!. The constantsc1
andc2 have been defined in the main text, see Eqs.~96! and
~97!.

Inverting the equation of state

hB5
]

]MB
GB ~B10!

gives, in the limithB→0, and to this order, the square of th
magnetization:

MB
25

1

8uB
~22m8B

2 !1
3

4p
~22m8B

2 !1/21
uB

8p2 F102N14~N

21!ln 322~N12!ln
22m8B

2

~24uB!2G1
uB

2~22m8B
2 !21/2

1920p3

3H 22736N2590426480c11240~N21!c2

2~75N225N1875!p221260@~N21!Li2~ 1
3 !

19Li2~2 1
3 !#1960~N21!@2Li2~22!2Li2~2 1

2 !#

2630~N21!~ ln 3!2248 ln 2@10~N21!ln 2

260~N21!ln 31111N2561#1240~12N257!

3 ln 321440~N12!ln
22m8B

2

~24uB!2J . ~B11!

The logarithmic terms inuB are nonanalyticities that ca
be removed using the lengthj2 instead ofm8B

2,0, see@38#.
Up to the three-loop order, the relation betweenj2 and
m8B

2,0 is

22m8B
25j2

22H 11
N12

p
uBj22

N12

p2
~uBj2!2@ 1385

108

14 ln~24uBj2!#1
N12

108p3
~uBj2!3

3F3~438N14349!1576~N18!Li2~2 1
3 !

148~N18!p218~43N1182!ln
3

4G J . ~B12!

Using Eq. ~B12! in Eq. ~B11! one obtains an analytic
function of uB , from which one extract the amplitudef f of
Eqs.~85! and ~93!, after proper normalization with the hel
of Zf . This has been done in@42,46# and will not be re-
peated here. The equations we have quoted here are
tioned because we shall need them below for obtaining
05611
e

en-
e

amplitude functionsf x1
and f x2

which, to our knowledge,
have not been determined analytically within this model.

APPENDIX C: THREE-LOOP AMPLITUDE FUNCTION
OF THE ISOTROPIC SUSCEPTIBILITY

ABOVE TC

By definition, the amplitude of the susceptibility aboveTc

is obtained from the susceptibility at zero momentumf x1

B

5j1
2 x1,B

21 , where the inverse susceptibility is given by th
two-point functionGB

(2) at zero momentum. The correlatio
length above the critical temperaturej1 is defined as in
Refs.@41,42,46#:

j1
2 5x1,B~q!]x1,B

21 ~q!/]q2uq250 . ~C1!

Combining with the definition off x1

B , we have

f x1

B 5
]x1,B

21

]q2 U
q250

5
]GB

(2)

]q2 U
q250

. ~C2!

The derivative ofGB
(2) with respect toq2 is needed. This is in

contrast to Refs.@41,42,46# where only the combination~C1!
was needed. For this reason, the intermediate result lea
to Eq. ~C2! was not published. Being needed to determ
the ratioRC in Eq. ~104! and the ratio of the susceptibilitie
~105!, we derive it in the following. The two-point function
can be written asGB

(2)5r 01q22SB(q,r 0 ,ūB), where the
self-energy has the expansion SB(q,r 0 ,ūB)
5(m51

` (2ūB)mSB
(m)(q,r 0). The two-loop results have firs

been given in Appendix A of Ref.@46#, with the result, up to
orderq2:

G (2)5q21r 024~N12!ADuBr 0
1/218~N12!2AD

2 uB
2

232
~N12!

~4p3!
F 2p

D23
2

2p

27

q2

r 0
GuB

2 . ~C3!

The pole atD53 can be eliminated by subtraction, leadin
to the massesmB

2 andm8B
2 . This is, however, of no concern

here since we are interested in taking the derivative w
respect toq2:

]GB
(2)

]q2 U
q250

511
N12

27p2

uB
2

r 0
. ~C4!

For the three-loop expansion, one must calculate the
grams in Appendix B of@42#. Again, we concentrate on th
derivative of the susceptibility at zero momentum, focusi
on the diagrammatic Eq.~B5! of @42#. The corresponding
vacuum diagrams have been given by Rajantie in@35#, see in
particular its Eqs.~15! and ~25! and, taking the appropriate
derivative with respect to the mass, we obtain the contri
tion of the three-loop diagrams:
3-28
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]SB
(3)

]q2 U
q250

5H ~N12!2

27p3
2

~N12!~N18!

54p3
@2813p2

132 ln 3
4 136Li2~2 1

3 !#J r 0
23/2. ~C5!

This has to be combined with Eq.~C4! to yield the expansion

]GB
(2)

]q2 U
q250

511
N12

27p2

uB
2

r 0
1H ~N12!2

27p3
2

~N12!~N18!

54p3

3@2813p2132 ln 3
4 136Li2~2 1

3 !#J uB
3

r 0
3/2

.

~C6!

Since there is no linear termuB , the amplitude of the
susceptibility aboveTc to three loops requires only the on
loop order of the correlation-lengthj1 , i.e., the one-loop
order of the susceptibility. To three loops, the following e
pression

m8B
25j1

22H 11
N12

p
uBj11

N12

p2
~uBj1!2

3F 1

27
12 ln~24uBj1!G1

N12

p3
~uBj1!3

3@3~3N122!2144~N18!Li2~2 1
3 !

212~N18!p2

22~43N1182!ln 3
4 #J ~C7!

is found in the literature, see@42#. This is the analog of Eq
~B12! aboveTc . At the one-loop level, there is no distinctio
between r 0 and mB

2 , and we identify r 05j1
22@11(N

12)uBj1 /p#. Together with Eq.~C6!, we arrive at

f x1

B [
]GB

(2)

]q2 U
q250

511
N12

27p2
~uBj1!22

~N12!~N18!

54p3

3@2813p2132 ln 3
4 136Li2~2 1

3 !#~uBj1!3.

~C8!

This has to be compared with the numerical coefficientsam
(2)

of Table 2 in@55#.
Having calculated the bare amplitude functionf x1

B , we

can now turn to the normalized onef x1
. Since the latter is

related to a two-point function, the normalization factor
equal to the wave-function renormalization constantZf :
f x1

5Zf f x1

B , with Zf being supplied by Eq.~16!. Using the
05611
relation ~13! betweenuB and ūB5uBj1 /(4p), we arrive at
the normalized amplitude function of the susceptibility abo
Tc , expressed in terms of the reduced bare coupling cons
ūB :

f x1
512 92

27 ~N12!ūB
22 8

27 ~N12!~N18!

3@2113112p21128 ln3
4 1144Li2~2 1

3 !#ūB
3 .

~C9!

The corresponding expansion in terms of the renormali
coupling constant gives

f x1
512 92

27 ~N12!u22 8
27 ~N12!~N18!

3@221112p21128 ln3
4 1144Li2~2 1

3 !#u3,

~C10!

where we used Eq.~14!. Contrary to Eq.~C9! which is well
behaved regarding strong-coupling theory, Eq.~C10!, which
coincides with the numerical coefficientscm

(2) of Table 4 of
@55#, is problematic when considering the Borel resumm
tion scheme: All its coefficients are negative. For this reas
we have not been able to reproduce the Borel resumma
made in Ref.@55#. We shall, however, make, in the ma
text, a comparison between the strong-coupling limit of E
~C9! and the resummation performed in@55#.

APPENDIX D: THREE-LOOP AMPLITUDE FUNCTION
OF THE NÄ1-SUSCEPTIBILITY BELOW TC

In Ref. @40#, the amplitude function of the susceptibilit
below Tc for N51 has been calculated numerically to fiv
loops. We have quoted in Eq.~91! the corresponding two-
loop part. This amplitude function enters the ratio of t
susceptibilities~105!. Since f x1

has been obtained to thre
loops in the previous section, it is also interesting to obt
f x2

analytically: The ratio~105! will thus be analytical.

In Ref. @42#, the free energyGB has been given analyti
cally up to three loops. We shall use this knowledge to
termine f x2

. We have recalled the relevant equations in t
first part of this Appendix, which have to be evaluated f
N51 andv̄50. The derivative of the free energy with re
spect to the magnetization leads to the equation of s
~B10! that can be inverted to obtain the magnetization@42#.
We have recalled its expression in Eq.~B11!. The equation
of state can itself be derived with respect to the magnet
tion, defining the inverse susceptibility belowTc : x2,B

21

5]hB /]MB . Only at this stage is the external fieldhB taken
to be vanishing. The lengthj2 @42#, which we recalled in
Eq. ~B12!, is then used to remove the nonanalyticity comi
from logarithms of the coupling constant. Doing so, and
ing the magnetization given by the equation of state, we h
been able to obtain the inverse bare susceptibility belowTc :
x2,B

21 5j2
22f x2

B , with
3-29
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f x2

B 511
9

2p
~uBj2!2

1061

36p2
~uBj2!21@19 472211 664c1

13p2110 480 ln4
3 136Li2~2 1

3 !#
~uBj2!3

64p3
. ~D1!

Numerically, this expansion reads

111.432 39~uBj2!22.986 16~uBj2!2111.2134~uBj2!3.

~D2!

This result agrees perfectly with the numerical expans
given in the last column of Table 2 in@40#. Using the relation
~14! betweenuB and ūB , we obtain

f x2

B 51118ūB2
4244

9
ūB

21@194 722116 64c113p2

1104 80 ln4
3 136Li2~2 1

3 !#ūB
3 . ~D3!

The renormalized version of Eq.~D3! is found by multiply-
ing it with Zf from Eq. ~16!:

f x2
51118ūB2

4352

9
ūB

21@199 042116 64c1

13p21104 80 ln4
3 136Li2~2 1

3 !#ūB
3 . ~D4!

This is the amplitude to be evaluated in the strong-coup
limit and entering the ratio~105!.

The bare amplitudes~C8! and~D3! might as well be cho-
sen to enter the amplitude ratio~105! since the renormaliza
tion constantZf drops out, being the same above and bel
Tc . We have, however, chosen to work with the renorm
ized quantities~C9! and ~D4!.

For completeness, we also state the expansion off x2
in

terms of the renormalized coupling constant. Using Eqs.~14!
and ~D4!, we obtain

f x2
51118u1

1480

9
u21@10722116 64c1

13p21104 80 ln4
3 136Li2~2 1

3 !#u3. ~D5!

Taking the inverse of this equation, we recover the coe
cients of the second column of Table 3 of Ref.@40#.

For an application to the evaluation of the amplitude ra
of the susceptibilities, we also give the perturbative exp
sion of the ratiof x2

/ f x1
at N51. Combining Eq.~C9! with

Eq. ~D4!, we obtain

f x2

f x1

51118ūB2
1420

3
ūB

21@191 842116 64c1

199p219456 ln4
3 11188Li2~2 1

3 !#ūB
3 . ~D6!
05611
n

g

l-

-
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APPENDIX E: AMPLITUDE RATIOS

To get the different amplitude ratios of Sec. IV B, w
make use of the relations

x15Zf

j1
2

f x1

expF2E
u( l 1)

u gf

bu
du8G , ~E1!

x25Zf

j2
2

f x2

expF2E
u( l 2)

u gf

bu
du8G , ~E2!

A65
~b6!2

~j6
0 !D

AD

4
~4nB* 1aF6* !, ~E3!

^fB&25Zf

f f

j2
D22

expF2E
u( l 2)

u gf

bu
du8G , ~E4!

which were derived in@37# for Eq. ~E1!, @40# for Eqs.~E2!
and~E4!, and@38# for Eq. ~E3!. All the quantities have been
defined in the main text, except for

l 65 expS E
u

u( l 6) du8

bu
D , ~E5!

with u(1)5 l 6 and the flow parameter chosen asl 6mj6

51, and withj65j6
0 utu2n.

The amplitude ratio of the heat capacity~100! follows
trivially from Eq. ~E3!, while the amplitude ratio for the
susceptibilities~105! is a direct consequence of Eqs.~E1!
and ~E2!. The only missing information is the ratioj1

0 /j2
0 ,

given explicitly in @38# as

j1
0

j2
0

5S b1

b2D n

. ~E6!

Because our derivation~104! of the universal combination
RC does not coincide with Eq.~103! derived by the authors
of @42#, we reproduce below our calculation. We need t
amplitude AM , related to Eq.~E4! by @56# ^fB&[MB
'AMutub. We deduce

AM
2 5Zf

f f

~j2
0 !(D22)

utun(D22)22b expF2E
u( l 2)

u gf

bu
GU

l 2→0

,

~E7!

where we have specified that the right-hand-side is evalu
at the critical point.

In the same way, the amplitude of the susceptibility
obtained from Eq.~E1! using@56# x1'G1utu2g. We deduce

G15Zf

~j1
0 !2

f x1

utug22n expF2E
u( l 1)

u gf

bu
GU

l 1→0

. ~E8!

Taking the ratioG1/AM
2 , we have directly
3-30
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G1

AM
2

5
~j1

0 !2

f x1
* f f*

~j2
0 !(D22). ~E9!

The dependence inutu has disappeared, as it should, due
the identityg22n12b2n(D22)50.

Combining with the definition ofA1 in Eq. ~E3!, we get

RC[
G1A1

AM
2

5
~b1!2

f x1
* f f*

S j2
0

j1
0 D (D22)

AD

4
~4nB* 1aF6* !

5
~b1!22n(D22)

~b2!2n(D22)

AD

4
~4nB* 1aF6* !

1

f x1
* f f*

. ~E10!

where we used Eq.~E6! to obtain the last equality. Using
b152nP1 and b253/222nP1 @38#, as well as A3
51/(4p) from Eq. ~8!, we arrive to the amplitude ratioRC
given in Eq.~104!.

APPENDIX F: DETERMINATION OF THE POLYNOMIAL
P¿ TO THREE LOOPS

In this section, we want to derive the analytical express
for the polynomialP1 up to three loops. It has been give
numerically, and resummed, forN51,2,3 up to five loops in
@55#, so that our analytical result will have to match th
reference. AboveTc , the relation betweenm8B

2 and the cor-
relation length has been given in Eq.~C7! at the three-loop
level. A polynomialP1

B in powers ofuB is defined through
the relation

P1
B 5]m8B

2/]j1
22 , ~F1!

leading to
cs

5

.

05611
n

P1
B 511

N12

2p
~uBj1!2

N12

p2
~uBj1!21

N12

108p3

3F23~3N122!112~N18!p212~43N1182!ln
3

4

1144~N18!Li2S 2
1

3D G~uBj1!3. ~F2!

The numeric coefficientbm of Table 2 of@55# coincides per-
fectly, up to three loops, with our analytical expressio
which has the advantage of being valid for allN. Its renor-
malized counterpart is defined by

P15Zr
21P1

B , ~F3!

where the renormalization constantZr
21 has been given to

three loops in Eq.~15!. The corresponding power series
ūB follows readily:

P15122~N12!ūB14~N12!~2N117!ūB
21 8

27 ~N12!

3@23~36N21837N13920!124~N18!p2

14~43N1182!ln 3
4 1288~N18!Li2~2 1

3 !#ūB
3 , ~F4!

where we have used the relation betweenuB andūB given in
Eq. ~13!, the scalem being identified with the inverse of th
correlation length:ūB5uBj1A3. Equation~F4! is the poly-
nomial whose strong-coupling expansion has to be ca
lated. The corresponding power series in the renormali
coupling constantu follows from Eq.~14!:

P15122~N12!u14~N12!u21 8
27 ~N12!@23~63N

1572!124~N18!p214~43N1182!ln 3
4

1288~N18!Li2~2 1
3 !#u3. ~F5!

The reader can verify that the analytical result coincide,
N51,2,3, with the numerical values in Table 4 of Ref.@55#.
It differs only in the fifth decimal place of the cubic termcP3
of this table.
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